ERG28_SCHPO
ID ERG28_SCHPO Reviewed; 136 AA.
AC O74820;
DT 27-APR-2001, integrated into UniProtKB/Swiss-Prot.
DT 01-NOV-1998, sequence version 1.
DT 25-MAY-2022, entry version 123.
DE RecName: Full=Ergosterol biosynthetic protein 28 {ECO:0000303|PubMed:11160377};
GN Name=erg28 {ECO:0000303|PubMed:11160377}; ORFNames=SPBC337.09;
OS Schizosaccharomyces pombe (strain 972 / ATCC 24843) (Fission yeast).
OC Eukaryota; Fungi; Dikarya; Ascomycota; Taphrinomycotina;
OC Schizosaccharomycetes; Schizosaccharomycetales; Schizosaccharomycetaceae;
OC Schizosaccharomyces.
OX NCBI_TaxID=284812;
RN [1]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC STRAIN=972 / ATCC 24843;
RX PubMed=11859360; DOI=10.1038/nature724;
RA Wood V., Gwilliam R., Rajandream M.A., Lyne M.H., Lyne R., Stewart A.,
RA Sgouros J.G., Peat N., Hayles J., Baker S.G., Basham D., Bowman S.,
RA Brooks K., Brown D., Brown S., Chillingworth T., Churcher C.M., Collins M.,
RA Connor R., Cronin A., Davis P., Feltwell T., Fraser A., Gentles S.,
RA Goble A., Hamlin N., Harris D.E., Hidalgo J., Hodgson G., Holroyd S.,
RA Hornsby T., Howarth S., Huckle E.J., Hunt S., Jagels K., James K.D.,
RA Jones L., Jones M., Leather S., McDonald S., McLean J., Mooney P.,
RA Moule S., Mungall K.L., Murphy L.D., Niblett D., Odell C., Oliver K.,
RA O'Neil S., Pearson D., Quail M.A., Rabbinowitsch E., Rutherford K.M.,
RA Rutter S., Saunders D., Seeger K., Sharp S., Skelton J., Simmonds M.N.,
RA Squares R., Squares S., Stevens K., Taylor K., Taylor R.G., Tivey A.,
RA Walsh S.V., Warren T., Whitehead S., Woodward J.R., Volckaert G., Aert R.,
RA Robben J., Grymonprez B., Weltjens I., Vanstreels E., Rieger M.,
RA Schaefer M., Mueller-Auer S., Gabel C., Fuchs M., Duesterhoeft A.,
RA Fritzc C., Holzer E., Moestl D., Hilbert H., Borzym K., Langer I., Beck A.,
RA Lehrach H., Reinhardt R., Pohl T.M., Eger P., Zimmermann W., Wedler H.,
RA Wambutt R., Purnelle B., Goffeau A., Cadieu E., Dreano S., Gloux S.,
RA Lelaure V., Mottier S., Galibert F., Aves S.J., Xiang Z., Hunt C.,
RA Moore K., Hurst S.M., Lucas M., Rochet M., Gaillardin C., Tallada V.A.,
RA Garzon A., Thode G., Daga R.R., Cruzado L., Jimenez J., Sanchez M.,
RA del Rey F., Benito J., Dominguez A., Revuelta J.L., Moreno S.,
RA Armstrong J., Forsburg S.L., Cerutti L., Lowe T., McCombie W.R.,
RA Paulsen I., Potashkin J., Shpakovski G.V., Ussery D., Barrell B.G.,
RA Nurse P.;
RT "The genome sequence of Schizosaccharomyces pombe.";
RL Nature 415:871-880(2002).
RN [2]
RP FUNCTION.
RC STRAIN=972 / ATCC 24843;
RX PubMed=8474436; DOI=10.1128/mcb.13.5.2706-2717.1993;
RA Robinson G.W., Tsay Y.H., Kienzle B.K., Smith-Monroy C.A., Bishop R.W.;
RT "Conservation between human and fungal squalene synthetases: similarities
RT in structure, function, and regulation.";
RL Mol. Cell. Biol. 13:2706-2717(1993).
RN [3]
RP FUNCTION.
RX PubMed=8586261; DOI=10.1111/j.1574-6968.1995.tb07929.x;
RA Harmouch N., Coulon J., Bonaly R.;
RT "Identification of 24-methylene-24,25-dihydrolanosterol as a precursor of
RT ergosterol in the yeasts Schizosaccharomyces pombe and Schizosaccharomyces
RT octosporus.";
RL FEMS Microbiol. Lett. 134:147-152(1995).
RN [4]
RP IDENTIFICATION, AND FUNCTION.
RX PubMed=11160377;
RA Gachotte D., Eckstein J., Barbuch R., Hughes T., Roberts C., Bard M.;
RT "A novel gene conserved from yeast to humans is involved in sterol
RT biosynthesis.";
RL J. Lipid Res. 42:150-154(2001).
RN [5]
RP FUNCTION.
RX PubMed=18310029; DOI=10.1099/mic.0.2007/011155-0;
RA Iwaki T., Iefuji H., Hiraga Y., Hosomi A., Morita T., Giga-Hama Y.,
RA Takegawa K.;
RT "Multiple functions of ergosterol in the fission yeast Schizosaccharomyces
RT pombe.";
RL Microbiology 154:830-841(2008).
RN [6]
RP FUNCTION.
RX PubMed=23640107; DOI=10.1007/s00438-013-0748-6;
RA Ohtsuka H., Ogawa S., Kawamura H., Sakai E., Ichinose K., Murakami H.,
RA Aiba H.;
RT "Screening for long-lived genes identifies Oga1, a guanine-quadruplex
RT associated protein that affects the chronological lifespan of the fission
RT yeast Schizosaccharomyces pombe.";
RL Mol. Genet. Genomics 288:285-295(2013).
CC -!- FUNCTION: Part of the third module of ergosterol biosynthesis pathway
CC that includes by the late steps of the pathway (PubMed:11160377). Erg28
CC has a role as a scaffold to help anchor the catalytic components of the
CC C-4 demethylation complex erg25, erg26 and erg27 to the endoplasmic
CC reticulum (PubMed:11160377). The third module or late pathway involves
CC the ergosterol synthesis itself through consecutive reactions that
CC mainly occur in the endoplasmic reticulum (ER) membrane. Firstly, the
CC squalene synthase erg9 catalyzes the condensation of 2 farnesyl
CC pyrophosphate moieties to form squalene, which is the precursor of all
CC steroids. Secondly, squalene is converted into lanosterol by the
CC consecutive action of the squalene epoxidase erg1 and the lanosterol
CC synthase erg7. The lanosterol 14-alpha-demethylase erg11/cyp1 catalyzes
CC C14-demethylation of lanosterol to produce 4,4'-dimethyl cholesta-
CC 8,14,24-triene-3-beta-ol. In the next steps, a complex process
CC involving various demethylation, reduction and desaturation reactions
CC catalyzed by the C-14 reductase erg24 and the C-4 demethylation complex
CC erg25-erg26-erg27 leads to the production of zymosterol. Erg28 likely
CC functions in the C-4 demethylation complex reaction by tethering erg26
CC and Erg27 to the endoplasmic reticulum or to facilitate interaction
CC between these proteins. Then, the sterol 24-C-methyltransferase erg6
CC catalyzes the methyl transfer from S-adenosyl-methionine to the C-24 of
CC zymosterol to form fecosterol. The C-8 sterol isomerase erg2 catalyzes
CC the reaction which results in unsaturation at C-7 in the B ring of
CC sterols and thus converts fecosterol to episterol. The sterol-C5-
CC desaturases erg31 and erg32 then catalyze the introduction of a C-5
CC double bond in the B ring to produce 5-dehydroepisterol. The C-22
CC sterol desaturase erg5 further converts 5-dehydroepisterol into
CC ergosta-5,7,22,24(28)-tetraen-3beta-ol by forming the C-22(23) double
CC bond in the sterol side chain. Finally, ergosta-5,7,22,24(28)-tetraen-
CC 3beta-ol is substrate of the C-24(28) sterol reductase erg4 to produce
CC ergosterol (PubMed:18310029) (Probable). In the genus
CC Schizosaccharomyces, a second route exists between lanosterol and
CC fecosterol, via the methylation of lanosterol to eburicol by erg6,
CC followed by C14-demethylation by erg11/cyp1 and C4-demethylation by the
CC demethylation complex erg25-erg26-erg27 (PubMed:8586261) (Probable).
CC {ECO:0000269|PubMed:11160377, ECO:0000305|PubMed:18310029,
CC ECO:0000305|PubMed:8586261}.
CC -!- FUNCTION: Extends the chronological lifespan when overexpressed.
CC {ECO:0000269|PubMed:23640107}.
CC -!- PATHWAY: Steroid metabolism; ergosterol biosynthesis.
CC {ECO:0000305|PubMed:11160377}.
CC -!- SUBUNIT: Heterotetramer of erg25, erg26, erg27 and erg28 (Probable).
CC Erg28 acts as a scaffold to tether erg27 and other 4,4-demethylation-
CC related enzymes, forming a demethylation enzyme complex, in the
CC endoplasmic reticulum (Probable). {ECO:0000305|PubMed:11160377}.
CC -!- SUBCELLULAR LOCATION: Endoplasmic reticulum membrane {ECO:0000305};
CC Multi-pass membrane protein {ECO:0000305}.
CC -!- MISCELLANEOUS: In Aspergillus, the biosynthesis pathway of the sterol
CC precursors leading to the prevalent sterol ergosterol differs from
CC yeast. The ringsystem of lanosterol in S.cerevisiae is firstly
CC demethylised in three enzymatic steps leading to the intermediate
CC zymosterol and secondly a methyl group is added to zymosterol by the
CC sterol 24-C-methyltransferase to form fecosterol. In Aspergillus,
CC lanosterol is firstly transmethylated by the sterol 24-C-
CC methyltransferase leading to the intermediate eburicol and secondly
CC demethylated in three steps to form fecosterol. In the genus
CC Schizosaccharomyces, 2 routes exist from lanosterol to erposterol: the
CC classical one via zymosterol and the second one via the formation of
CC eburicol followed by demethylation. {ECO:0000269|PubMed:8586261}.
CC -!- SIMILARITY: Belongs to the ERG28 family. {ECO:0000305}.
CC ---------------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC ---------------------------------------------------------------------------
DR EMBL; CU329671; CAA21279.1; -; Genomic_DNA.
DR PIR; T40262; T40262.
DR RefSeq; NP_595410.1; NM_001021317.2.
DR AlphaFoldDB; O74820; -.
DR BioGRID; 277541; 83.
DR STRING; 4896.SPBC337.09.1; -.
DR MaxQB; O74820; -.
DR PaxDb; O74820; -.
DR EnsemblFungi; SPBC337.09.1; SPBC337.09.1:pep; SPBC337.09.
DR GeneID; 2541026; -.
DR KEGG; spo:SPBC337.09; -.
DR PomBase; SPBC337.09; erg28.
DR VEuPathDB; FungiDB:SPBC337.09; -.
DR eggNOG; KOG3455; Eukaryota.
DR HOGENOM; CLU_114589_0_0_1; -.
DR InParanoid; O74820; -.
DR OMA; SEWLIFG; -.
DR PhylomeDB; O74820; -.
DR UniPathway; UPA00768; -.
DR PRO; PR:O74820; -.
DR Proteomes; UP000002485; Chromosome II.
DR GO; GO:0005783; C:endoplasmic reticulum; HDA:PomBase.
DR GO; GO:0005789; C:endoplasmic reticulum membrane; ISS:PomBase.
DR GO; GO:0016021; C:integral component of membrane; IEA:UniProtKB-KW.
DR GO; GO:0030674; F:protein-macromolecule adaptor activity; IBA:GO_Central.
DR GO; GO:0006696; P:ergosterol biosynthetic process; ISS:PomBase.
DR InterPro; IPR005352; Erg28.
DR PANTHER; PTHR15451; PTHR15451; 1.
DR Pfam; PF03694; Erg28; 1.
PE 3: Inferred from homology;
KW Endoplasmic reticulum; Lipid biosynthesis; Lipid metabolism; Membrane;
KW Reference proteome; Steroid biosynthesis; Steroid metabolism;
KW Sterol biosynthesis; Sterol metabolism; Transmembrane; Transmembrane helix.
FT CHAIN 1..136
FT /note="Ergosterol biosynthetic protein 28"
FT /id="PRO_0000193907"
FT TRANSMEM 18..34
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 56..72
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 79..95
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 109..125
FT /note="Helical"
FT /evidence="ECO:0000255"
SQ SEQUENCE 136 AA; 15252 MW; B028AA53D8F12F3F CRC64;
MSQILAMLPD SLVAKWNVVV SVAALFNTVQ SFLTPKLTKR VYSNTNEVNG LQGRTFGIWT
LLSAIVRFYC AYHITNPDVY FLCQCTYYLA CFHFLSEWLL FRTTNLGPGL LSPIVVSTVS
IWFMAKEKAS ILGIAA