位置:首页 > 蛋白库 > ERG5B_GIBZE
ERG5B_GIBZE
ID   ERG5B_GIBZE             Reviewed;         534 AA.
AC   A0A098DJ84; A0A0E0S4W0;
DT   23-FEB-2022, integrated into UniProtKB/Swiss-Prot.
DT   07-JAN-2015, sequence version 1.
DT   03-AUG-2022, entry version 35.
DE   RecName: Full=C-22 sterol desaturase ERG5B {ECO:0000303|PubMed:24785759};
DE            EC=1.14.19.41 {ECO:0000305|PubMed:23442154};
DE   AltName: Full=Ergosterol biosynthetic protein 5B {ECO:0000303|PubMed:24785759};
GN   Name=ERG5B {ECO:0000303|PubMed:24785759};
GN   ORFNames=FG03686, FGRAMPH1_01T13463;
OS   Gibberella zeae (strain ATCC MYA-4620 / CBS 123657 / FGSC 9075 / NRRL 31084
OS   / PH-1) (Wheat head blight fungus) (Fusarium graminearum).
OC   Eukaryota; Fungi; Dikarya; Ascomycota; Pezizomycotina; Sordariomycetes;
OC   Hypocreomycetidae; Hypocreales; Nectriaceae; Fusarium.
OX   NCBI_TaxID=229533;
RN   [1]
RP   NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC   STRAIN=ATCC MYA-4620 / CBS 123657 / FGSC 9075 / NRRL 31084 / PH-1;
RX   PubMed=17823352; DOI=10.1126/science.1143708;
RA   Cuomo C.A., Gueldener U., Xu J.-R., Trail F., Turgeon B.G., Di Pietro A.,
RA   Walton J.D., Ma L.-J., Baker S.E., Rep M., Adam G., Antoniw J., Baldwin T.,
RA   Calvo S.E., Chang Y.-L., DeCaprio D., Gale L.R., Gnerre S., Goswami R.S.,
RA   Hammond-Kosack K., Harris L.J., Hilburn K., Kennell J.C., Kroken S.,
RA   Magnuson J.K., Mannhaupt G., Mauceli E.W., Mewes H.-W., Mitterbauer R.,
RA   Muehlbauer G., Muensterkoetter M., Nelson D., O'Donnell K., Ouellet T.,
RA   Qi W., Quesneville H., Roncero M.I.G., Seong K.-Y., Tetko I.V., Urban M.,
RA   Waalwijk C., Ward T.J., Yao J., Birren B.W., Kistler H.C.;
RT   "The Fusarium graminearum genome reveals a link between localized
RT   polymorphism and pathogen specialization.";
RL   Science 317:1400-1402(2007).
RN   [2]
RP   GENOME REANNOTATION.
RC   STRAIN=ATCC MYA-4620 / CBS 123657 / FGSC 9075 / NRRL 31084 / PH-1;
RX   PubMed=20237561; DOI=10.1038/nature08850;
RA   Ma L.-J., van der Does H.C., Borkovich K.A., Coleman J.J., Daboussi M.-J.,
RA   Di Pietro A., Dufresne M., Freitag M., Grabherr M., Henrissat B.,
RA   Houterman P.M., Kang S., Shim W.-B., Woloshuk C., Xie X., Xu J.-R.,
RA   Antoniw J., Baker S.E., Bluhm B.H., Breakspear A., Brown D.W.,
RA   Butchko R.A.E., Chapman S., Coulson R., Coutinho P.M., Danchin E.G.J.,
RA   Diener A., Gale L.R., Gardiner D.M., Goff S., Hammond-Kosack K.E.,
RA   Hilburn K., Hua-Van A., Jonkers W., Kazan K., Kodira C.D., Koehrsen M.,
RA   Kumar L., Lee Y.-H., Li L., Manners J.M., Miranda-Saavedra D.,
RA   Mukherjee M., Park G., Park J., Park S.-Y., Proctor R.H., Regev A.,
RA   Ruiz-Roldan M.C., Sain D., Sakthikumar S., Sykes S., Schwartz D.C.,
RA   Turgeon B.G., Wapinski I., Yoder O., Young S., Zeng Q., Zhou S.,
RA   Galagan J., Cuomo C.A., Kistler H.C., Rep M.;
RT   "Comparative genomics reveals mobile pathogenicity chromosomes in
RT   Fusarium.";
RL   Nature 464:367-373(2010).
RN   [3]
RP   NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC   STRAIN=ATCC MYA-4620 / CBS 123657 / FGSC 9075 / NRRL 31084 / PH-1;
RX   PubMed=26198851; DOI=10.1186/s12864-015-1756-1;
RA   King R., Urban M., Hammond-Kosack M.C.U., Hassani-Pak K.,
RA   Hammond-Kosack K.E.;
RT   "The completed genome sequence of the pathogenic ascomycete fungus Fusarium
RT   graminearum.";
RL   BMC Genomics 16:544-544(2015).
RN   [4]
RP   FUNCTION, DISRUPTION PHENOTYPE, AND PATHWAY.
RX   PubMed=23442154; DOI=10.1111/nph.12193;
RA   Fan J., Urban M., Parker J.E., Brewer H.C., Kelly S.L.,
RA   Hammond-Kosack K.E., Fraaije B.A., Liu X., Cools H.J.;
RT   "Characterization of the sterol 14alpha-demethylases of Fusarium
RT   graminearum identifies a novel genus-specific CYP51 function.";
RL   New Phytol. 198:821-835(2013).
RN   [5]
RP   DISRUPTION PHENOTYPE.
RX   PubMed=24785759; DOI=10.1016/j.fgb.2014.04.010;
RA   Yun Y., Yin D., Dawood D.H., Liu X., Chen Y., Ma Z.;
RT   "Functional characterization of FgERG3 and FgERG5 associated with
RT   ergosterol biosynthesis, vegetative differentiation and virulence of
RT   Fusarium graminearum.";
RL   Fungal Genet. Biol. 68:60-70(2014).
CC   -!- FUNCTION: C-22 sterol desaturase; part of the third module of
CC       ergosterol biosynthesis pathway that includes the late steps of the
CC       pathway (By similarity). ERG5A and ERG5B convert 5-dehydroepisterol
CC       into ergosta-5,7,22,24(28)-tetraen-3beta-ol by forming the C-22(23)
CC       double bond in the sterol side chain (By similarity). The third module
CC       or late pathway involves the ergosterol synthesis itself through
CC       consecutive reactions that mainly occur in the endoplasmic reticulum
CC       (ER) membrane. Firstly, the squalene synthase ERG9 catalyzes the
CC       condensation of 2 farnesyl pyrophosphate moieties to form squalene,
CC       which is the precursor of all steroids. Squalene synthase is crucial
CC       for balancing the incorporation of farnesyl diphosphate (FPP) into
CC       sterol and nonsterol isoprene synthesis. Secondly, squalene is
CC       converted into lanosterol by the consecutive action of the squalene
CC       epoxidase ERG1 and the lanosterol synthase ERG7. Then, the delta(24)-
CC       sterol C-methyltransferase ERG6 methylates lanosterol at C-24 to
CC       produce eburicol. Eburicol is the substrate of the sterol 14-alpha
CC       demethylase encoded by CYP51A, CYP51B and CYP51C, to yield 4,4,24-
CC       trimethyl ergosta-8,14,24(28)-trienol. CYP51B encodes the enzyme
CC       primarily responsible for sterol 14-alpha-demethylation, and plays an
CC       essential role in ascospore formation. CYP51A encodes an additional
CC       sterol 14-alpha-demethylase, induced on ergosterol depletion and
CC       responsible for the intrinsic variation in azole sensitivity. The third
CC       CYP51 isoform, CYP51C, does not encode a sterol 14-alpha-demethylase,
CC       but is required for full virulence on host wheat ears. The C-14
CC       reductase ERG24 then reduces the C14=C15 double bond which leads to
CC       4,4-dimethylfecosterol. A sequence of further demethylations at C-4,
CC       involving the C-4 demethylation complex containing the C-4 methylsterol
CC       oxidases ERG25, the sterol-4-alpha-carboxylate 3-dehydrogenase ERG26
CC       and the 3-keto-steroid reductase ERG27, leads to the production of
CC       fecosterol via 4-methylfecosterol. ERG28 has a role as a scaffold to
CC       help anchor ERG25, ERG26 and ERG27 to the endoplasmic reticulum. The C-
CC       8 sterol isomerase ERG2 then catalyzes the reaction which results in
CC       unsaturation at C-7 in the B ring of sterols and thus converts
CC       fecosterol to episterol. The sterol-C5-desaturases ERG3A and ERG3BB
CC       then catalyze the introduction of a C-5 double bond in the B ring to
CC       produce 5-dehydroepisterol. The C-22 sterol desaturases ERG5A and ERG5B
CC       further convert 5-dehydroepisterol into ergosta-5,7,22,24(28)-tetraen-
CC       3beta-ol by forming the C-22(23) double bond in the sterol side chain.
CC       Finally, ergosta-5,7,22,24(28)-tetraen-3beta-ol is substrate of the C-
CC       24(28) sterol reductase ERG4 to produce ergosterol (Probable).
CC       {ECO:0000250|UniProtKB:P54781, ECO:0000305|PubMed:23442154}.
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=5-dehydroepisterol + H(+) + NADPH + O2 = ergosta-
CC         5,7,22,24(28)-tetraen-3beta-ol + 2 H2O + NADP(+);
CC         Xref=Rhea:RHEA:33467, ChEBI:CHEBI:15377, ChEBI:CHEBI:15378,
CC         ChEBI:CHEBI:15379, ChEBI:CHEBI:18249, ChEBI:CHEBI:52972,
CC         ChEBI:CHEBI:57783, ChEBI:CHEBI:58349; EC=1.14.19.41;
CC         Evidence={ECO:0000305|PubMed:23442154};
CC       PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:33468;
CC         Evidence={ECO:0000305|PubMed:23442154};
CC   -!- COFACTOR:
CC       Name=heme; Xref=ChEBI:CHEBI:30413;
CC         Evidence={ECO:0000250|UniProtKB:P04798};
CC   -!- PATHWAY: Steroid metabolism; ergosterol biosynthesis.
CC       {ECO:0000305|PubMed:23442154}.
CC   -!- SUBCELLULAR LOCATION: Endoplasmic reticulum membrane {ECO:0000305};
CC       Single-pass membrane protein {ECO:0000255}.
CC   -!- DISRUPTION PHENOTYPE: Leads to a severe decrease in conidiation and
CC       virulence when ERG5A is also deleted (PubMed:23442154). The absence of
CC       both ERG5A and ERG5B seems not to affect the ergosterol production
CC       (PubMed:24785759). {ECO:0000269|PubMed:23442154,
CC       ECO:0000269|PubMed:24785759}.
CC   -!- MISCELLANEOUS: In Fusarium, the biosynthesis pathway of the sterol
CC       precursors leading to the prevalent sterol ergosterol differs from
CC       yeast. The ringsystem of lanosterol in S.cerevisiae is firstly
CC       demethylised in three enzymatic steps leading to the intermediate
CC       zymosterol and secondly a methyl group is added to zymosterol by the
CC       sterol 24-C-methyltransferase to form fecosterol. In Fusarium,
CC       lanosterol is firstly transmethylated by the sterol 24-C-
CC       methyltransferase leading to the intermediate eburicol and secondly
CC       demethylated in three steps to form fecosterol.
CC       {ECO:0000269|PubMed:23442154}.
CC   -!- SIMILARITY: Belongs to the cytochrome P450 family. {ECO:0000305}.
CC   ---------------------------------------------------------------------------
CC   Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC   Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC   ---------------------------------------------------------------------------
DR   EMBL; HG970333; CEF78535.1; -; Genomic_DNA.
DR   STRING; 5518.FGSG_03686P0; -.
DR   VEuPathDB; FungiDB:FGRAMPH1_01G13463; -.
DR   eggNOG; KOG0157; Eukaryota.
DR   UniPathway; UPA00768; -.
DR   Proteomes; UP000070720; Chromosome 2.
DR   GO; GO:0005789; C:endoplasmic reticulum membrane; IEA:UniProtKB-SubCell.
DR   GO; GO:0016021; C:integral component of membrane; IEA:UniProtKB-KW.
DR   GO; GO:0020037; F:heme binding; IEA:InterPro.
DR   GO; GO:0005506; F:iron ion binding; IEA:InterPro.
DR   GO; GO:0004497; F:monooxygenase activity; IEA:UniProtKB-KW.
DR   GO; GO:0016705; F:oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen; IEA:InterPro.
DR   GO; GO:0016126; P:sterol biosynthetic process; IEA:UniProtKB-UniPathway.
DR   Gene3D; 1.10.630.10; -; 1.
DR   InterPro; IPR001128; Cyt_P450.
DR   InterPro; IPR002403; Cyt_P450_E_grp-IV.
DR   InterPro; IPR036396; Cyt_P450_sf.
DR   Pfam; PF00067; p450; 1.
DR   PRINTS; PR00465; EP450IV.
DR   SUPFAM; SSF48264; SSF48264; 1.
PE   3: Inferred from homology;
KW   Endoplasmic reticulum; Iron; Lipid biosynthesis; Lipid metabolism;
KW   Membrane; Metal-binding; Monooxygenase; Oxidoreductase; Reference proteome;
KW   Steroid biosynthesis; Steroid metabolism; Sterol biosynthesis;
KW   Sterol metabolism; Transmembrane; Transmembrane helix.
FT   CHAIN           1..534
FT                   /note="C-22 sterol desaturase ERG5B"
FT                   /id="PRO_0000454354"
FT   TRANSMEM        43..61
FT                   /note="Helical"
FT                   /evidence="ECO:0000255"
FT   BINDING         480
FT                   /ligand="heme"
FT                   /ligand_id="ChEBI:CHEBI:30413"
FT                   /ligand_part="Fe"
FT                   /ligand_part_id="ChEBI:CHEBI:18248"
FT                   /note="axial binding residue"
FT                   /evidence="ECO:0000250|UniProtKB:P04798"
SQ   SEQUENCE   534 AA;  59915 MW;  ED2C83B03032454F CRC64;
     MASLLDCGAG LASANASFST ATDLSQENGL FSSWFERCSK TQIAVTIFAV LIAYDQFMYI
     WRKGSIAGPA FKIPFMGPFI QALYPKFDAY LAQWASGPLS CVSVFHKFVV LASDRDIAHK
     VFKSPTFVKP CIVPMAETLL RPSAWVFLQG RAHTEYRRGL NGLFTNKAIS TYLPAQEKVY
     DDYFERFVAA SEANKSKPMA FMRLFREINC ALSCRTFFGD YISQDAVEKI AEDFYQVTAA
     LELVNVPLSV YIPFTKCWRG KRTADAVLAE FASCAAACKA NMAAGAEPKC IVDQWVLHMM
     ESKRYNDRIA AGETGAEKPK NLIREFTDEE IGQTMFTFLF ASQDASSSAT TWLFQILAQR
     PDVLDRLREE NLSVRGGNKE TPFELSMLES LPYTNAVIKE LLRYRPPVIF VPYEATKKFP
     VTPNYTISKG SMIVPSCYPA LHDPQVYPDP ETFDPERWIT GDAESKTKNW LVFGAGAHDC
     LARKYVPLTM AAMIGKASLE LDWVHHATSQ SEEIRVFATL FPEDECQLVF TRQG
 
 
维奥蛋白资源库 - 中文蛋白资源 CopyRight © 2010-2024