位置:首页 > 蛋白库 > PAD4_ARATH
PAD4_ARATH
ID   PAD4_ARATH              Reviewed;         541 AA.
AC   Q9S745; B0ZUC0;
DT   09-JUL-2014, integrated into UniProtKB/Swiss-Prot.
DT   01-MAY-2000, sequence version 1.
DT   25-MAY-2022, entry version 135.
DE   RecName: Full=Lipase-like PAD4;
DE            EC=2.3.1.-;
DE   AltName: Full=Protein ENHANCED DISEASE SUSCEPTIBILITY 9;
DE   AltName: Full=Protein PHYTOALEXIN DEFICIENT 4;
DE            Short=AtPAD4;
GN   Name=PAD4; Synonyms=EDS9; OrderedLocusNames=At3g52430; ORFNames=F22O6.190;
OS   Arabidopsis thaliana (Mouse-ear cress).
OC   Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC   Spermatophyta; Magnoliopsida; eudicotyledons; Gunneridae; Pentapetalae;
OC   rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis.
OX   NCBI_TaxID=3702;
RN   [1]
RP   NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, DISRUPTION PHENOTYPE, IDENTIFICATION,
RP   AND INDUCTION BY P.SYRINGAE AND SALICYLIC ACID (SA).
RC   STRAIN=cv. Columbia;
RX   PubMed=10557364; DOI=10.1073/pnas.96.23.13583;
RA   Jirage D., Tootle T.L., Reuber T.L., Frost L.N., Feys B.J., Parker J.E.,
RA   Ausubel F.M., Glazebrook J.;
RT   "Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for
RT   salicylic acid signaling.";
RL   Proc. Natl. Acad. Sci. U.S.A. 96:13583-13588(1999).
RN   [2]
RP   NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND REVIEW ON PLANT DEFENSE.
RC   STRAIN=cv. Aa-0, cv. Ak-1, cv. Bay-0, cv. Columbia, cv. Di-0, cv. Gu-0,
RC   cv. HOG, cv. Landsberg erecta, cv. Sha, cv. Sorbo, and cv. Tsu-0;
RX   PubMed=19064707; DOI=10.1534/genetics.108.097279;
RA   Caldwell K.S., Michelmore R.W.;
RT   "Arabidopsis thaliana genes encoding defense signaling and recognition
RT   proteins exhibit contrasting evolutionary dynamics.";
RL   Genetics 181:671-684(2009).
RN   [3]
RP   NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC   STRAIN=cv. Columbia;
RX   PubMed=11130713; DOI=10.1038/35048706;
RA   Salanoubat M., Lemcke K., Rieger M., Ansorge W., Unseld M., Fartmann B.,
RA   Valle G., Bloecker H., Perez-Alonso M., Obermaier B., Delseny M.,
RA   Boutry M., Grivell L.A., Mache R., Puigdomenech P., De Simone V.,
RA   Choisne N., Artiguenave F., Robert C., Brottier P., Wincker P.,
RA   Cattolico L., Weissenbach J., Saurin W., Quetier F., Schaefer M.,
RA   Mueller-Auer S., Gabel C., Fuchs M., Benes V., Wurmbach E., Drzonek H.,
RA   Erfle H., Jordan N., Bangert S., Wiedelmann R., Kranz H., Voss H.,
RA   Holland R., Brandt P., Nyakatura G., Vezzi A., D'Angelo M., Pallavicini A.,
RA   Toppo S., Simionati B., Conrad A., Hornischer K., Kauer G., Loehnert T.-H.,
RA   Nordsiek G., Reichelt J., Scharfe M., Schoen O., Bargues M., Terol J.,
RA   Climent J., Navarro P., Collado C., Perez-Perez A., Ottenwaelder B.,
RA   Duchemin D., Cooke R., Laudie M., Berger-Llauro C., Purnelle B., Masuy D.,
RA   de Haan M., Maarse A.C., Alcaraz J.-P., Cottet A., Casacuberta E.,
RA   Monfort A., Argiriou A., Flores M., Liguori R., Vitale D., Mannhaupt G.,
RA   Haase D., Schoof H., Rudd S., Zaccaria P., Mewes H.-W., Mayer K.F.X.,
RA   Kaul S., Town C.D., Koo H.L., Tallon L.J., Jenkins J., Rooney T., Rizzo M.,
RA   Walts A., Utterback T., Fujii C.Y., Shea T.P., Creasy T.H., Haas B.,
RA   Maiti R., Wu D., Peterson J., Van Aken S., Pai G., Militscher J.,
RA   Sellers P., Gill J.E., Feldblyum T.V., Preuss D., Lin X., Nierman W.C.,
RA   Salzberg S.L., White O., Venter J.C., Fraser C.M., Kaneko T., Nakamura Y.,
RA   Sato S., Kato T., Asamizu E., Sasamoto S., Kimura T., Idesawa K.,
RA   Kawashima K., Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A.,
RA   Muraki A., Nakayama S., Nakazaki N., Shinpo S., Takeuchi C., Wada T.,
RA   Watanabe A., Yamada M., Yasuda M., Tabata S.;
RT   "Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana.";
RL   Nature 408:820-822(2000).
RN   [4]
RP   GENOME REANNOTATION.
RC   STRAIN=cv. Columbia;
RX   PubMed=27862469; DOI=10.1111/tpj.13415;
RA   Cheng C.Y., Krishnakumar V., Chan A.P., Thibaud-Nissen F., Schobel S.,
RA   Town C.D.;
RT   "Araport11: a complete reannotation of the Arabidopsis thaliana reference
RT   genome.";
RL   Plant J. 89:789-804(2017).
RN   [5]
RP   NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 227-434, AND REVIEW ON PLANT DEFENSE.
RX   PubMed=18245336; DOI=10.1534/genetics.107.083279;
RA   Bakker E.G., Traw M.B., Toomajian C., Kreitman M., Bergelson J.;
RT   "Low levels of polymorphism in genes that control the activation of defense
RT   response in Arabidopsis thaliana.";
RL   Genetics 178:2031-2043(2008).
RN   [6]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RC   STRAIN=cv. Columbia;
RX   PubMed=8725243; DOI=10.1093/genetics/143.2.973;
RA   Glazebrook J., Rogers E.E., Ausubel F.M.;
RT   "Isolation of Arabidopsis mutants with enhanced disease susceptibility by
RT   direct screening.";
RL   Genetics 143:973-982(1996).
RN   [7]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RC   STRAIN=cv. Columbia;
RX   PubMed=9136026; DOI=10.1093/genetics/146.1.381;
RA   Glazebrook J., Zook M., Mert F., Kagan I., Rogers E.E., Crute I.R.,
RA   Holub E.B., Hammerschmidt R., Ausubel F.M.;
RT   "Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a
RT   regulatory factor and that four PAD genes contribute to downy mildew
RT   resistance.";
RL   Genetics 146:381-392(1997).
RN   [8]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RC   STRAIN=cv. Columbia;
RX   PubMed=9634589; DOI=10.2307/3870687;
RA   Zhou N., Tootle T.L., Tsui F., Klessig D.F., Glazebrook J.;
RT   "PAD4 functions upstream from salicylic acid to control defense responses
RT   in Arabidopsis.";
RL   Plant Cell 10:1021-1030(1998).
RN   [9]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RC   STRAIN=cv. Columbia, and cv. Landsberg erecta;
RX   PubMed=9881167; DOI=10.1046/j.1365-313x.1998.00319.x;
RA   Reuber T.L., Plotnikova J.M., Dewdney J., Rogers E.E., Wood W.,
RA   Ausubel F.M.;
RT   "Correlation of defense gene induction defects with powdery mildew
RT   susceptibility in Arabidopsis enhanced disease susceptibility mutants.";
RL   Plant J. 16:473-485(1998).
RN   [10]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RC   STRAIN=cv. Columbia;
RX   PubMed=10796016; DOI=10.1094/mpmi.2000.13.5.503;
RA   Gupta V., Willits M.G., Glazebrook J.;
RT   "Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent
RT   expression of defense responses: evidence for inhibition of jasmonic acid
RT   signaling by SA.";
RL   Mol. Plant Microbe Interact. 13:503-511(2000).
RN   [11]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RC   STRAIN=cv. Columbia;
RX   PubMed=11041879; DOI=10.2307/3871195;
RA   Asai T., Stone J.M., Heard J.E., Kovtun Y., Yorgey P., Sheen J.,
RA   Ausubel F.M.;
RT   "Fumonisin B1-induced cell death in arabidopsis protoplasts requires
RT   jasmonate-, ethylene-, and salicylate-dependent signaling pathways.";
RL   Plant Cell 12:1823-1836(2000).
RN   [12]
RP   FUNCTION, DISRUPTION PHENOTYPE, INTERACTION WITH EDS1, AND INDUCTION BY
RP   SALICYLIC ACID AND PATHOGENS.
RX   PubMed=11574472; DOI=10.1093/emboj/20.19.5400;
RA   Feys B.J., Moisan L.J., Newman M.-A., Parker J.E.;
RT   "Direct interaction between the Arabidopsis disease resistance signaling
RT   proteins, EDS1 and PAD4.";
RL   EMBO J. 20:5400-5411(2001).
RN   [13]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=11595797; DOI=10.2307/3871503;
RA   Rusterucci C., Aviv D.H., Holt B.F. III, Dangl J.L., Parker J.E.;
RT   "The disease resistance signaling components EDS1 and PAD4 are essential
RT   regulators of the cell death pathway controlled by LSD1 in Arabidopsis.";
RL   Plant Cell 13:2211-2224(2001).
RN   [14]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=11826312; DOI=10.1105/tpc.010376;
RA   Nawrath C., Heck S., Parinthawong N., Metraux J.-P.;
RT   "EDS5, an essential component of salicylic acid-dependent signaling for
RT   disease resistance in Arabidopsis, is a member of the MATE transporter
RT   family.";
RL   Plant Cell 14:275-286(2002).
RN   [15]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=11846877; DOI=10.1046/j.0960-7412.2001.01229.x;
RA   van der Biezen E.A., Freddie C.T., Kahn K., Parker J.E., Jones J.D.;
RT   "Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR
RT   genes and confers downy mildew resistance through multiple signalling
RT   components.";
RL   Plant J. 29:439-451(2002).
RN   [16]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=14617091; DOI=10.1046/j.1365-313x.2003.01881.x;
RA   Heck S., Grau T., Buchala A., Metraux J.P., Nawrath C.;
RT   "Genetic evidence that expression of NahG modifies defence pathways
RT   independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas
RT   syringae pv. tomato interaction.";
RL   Plant J. 36:342-352(2003).
RN   [17]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=15447647; DOI=10.1111/j.1365-313x.2004.02200.x;
RA   Song J.T., Lu H., McDowell J.M., Greenberg J.T.;
RT   "A key role for ALD1 in activation of local and systemic defenses in
RT   Arabidopsis.";
RL   Plant J. 40:200-212(2004).
RN   [18]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=15347794; DOI=10.1104/pp.104.043646;
RA   Mateo A., Muhlenbock P., Rusterucci C., Chang C.C., Miszalski Z.,
RA   Karpinska B., Parker J.E., Mullineaux P.M., Karpinski S.;
RT   "LESION SIMULATING DISEASE 1 is required for acclimation to conditions that
RT   promote excess excitation energy.";
RL   Plant Physiol. 136:2818-2830(2004).
RN   [19]
RP   REVIEW.
RX   PubMed=15939664; DOI=10.1016/j.pbi.2005.05.010;
RA   Wiermer M., Feys B.J., Parker J.E.;
RT   "Plant immunity: the EDS1 regulatory node.";
RL   Curr. Opin. Plant Biol. 8:383-389(2005).
RN   [20]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=16353557; DOI=10.1094/mpmi-18-1226;
RA   McDowell J.M., Williams S.G., Funderburg N.T., Eulgem T., Dangl J.L.;
RT   "Genetic analysis of developmentally regulated resistance to downy mildew
RT   (Hyaloperonospora parasitica) in Arabidopsis thaliana.";
RL   Mol. Plant Microbe Interact. 18:1226-1234(2005).
RN   [21]
RP   FUNCTION, INTERACTION WITH EDS1, AND SUBCELLULAR LOCATION.
RX   PubMed=16040633; DOI=10.1105/tpc.105.033910;
RA   Feys B.J., Wiermer M., Bhat R.A., Moisan L.J., Medina-Escobar N., Neu C.,
RA   Cabral A., Parker J.E.;
RT   "Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an
RT   ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity.";
RL   Plant Cell 17:2601-2613(2005).
RN   [22]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=15773856; DOI=10.1111/j.1365-313x.2005.02356.x;
RA   Xiao S., Calis O., Patrick E., Zhang G., Charoenwattana P., Muskett P.,
RA   Parker J.E., Turner J.G.;
RT   "The atypical resistance gene, RPW8, recruits components of basal defence
RT   for powdery mildew resistance in Arabidopsis.";
RL   Plant J. 42:95-110(2005).
RN   [23]
RP   FUNCTION, DISRUPTION PHENOTYPE, AND INDUCTION BY GREEN PEACH APHID.
RX   PubMed=16299172; DOI=10.1104/pp.105.070433;
RA   Pegadaraju V., Knepper C., Reese J., Shah J.;
RT   "Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN
RT   DEFICIENT4 gene is associated with defense against the phloem-feeding green
RT   peach aphid.";
RL   Plant Physiol. 139:1927-1934(2005).
RN   [24]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=16813576; DOI=10.1111/j.1365-313x.2006.02806.x;
RA   Brodersen P., Petersen M., Bjorn Nielsen H., Zhu S., Newman M.A.,
RA   Shokat K.M., Rietz S., Parker J., Mundy J.;
RT   "Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic
RT   acid/ethylene-dependent responses via EDS1 and PAD4.";
RL   Plant J. 47:532-546(2006).
RN   [25]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=18055613; DOI=10.1105/tpc.106.048843;
RA   Muehlenbock P., Plaszczyca M., Plaszczyca M., Mellerowicz E., Karpinski S.;
RT   "Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION
RT   SIMULATING DISEASE1.";
RL   Plant Cell 19:3819-3830(2007).
RN   [26]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RC   STRAIN=cv. Columbia, cv. Landsberg erecta, and cv. Wassilewskija;
RX   PubMed=17725549; DOI=10.1111/j.1365-313x.2007.03241.x;
RA   Pegadaraju V., Louis J., Singh V., Reese J.C., Bautor J., Feys B.J.,
RA   Cook G., Parker J.E., Shah J.;
RT   "Phloem-based resistance to green peach aphid is controlled by Arabidopsis
RT   PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE
RT   SUSCEPTIBILITY1.";
RL   Plant J. 52:332-341(2007).
RN   [27]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=17431038; DOI=10.1073/pnas.0609259104;
RA   Chandra-Shekara A.C., Venugopal S.C., Barman S.R., Kachroo A., Kachroo P.;
RT   "Plastidial fatty acid levels regulate resistance gene-dependent defense
RT   signaling in Arabidopsis.";
RL   Proc. Natl. Acad. Sci. U.S.A. 104:7277-7282(2007).
RN   [28]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=18005228; DOI=10.1111/j.1365-313x.2007.03369.x;
RA   Tsuda K., Sato M., Glazebrook J., Cohen J.D., Katagiri F.;
RT   "Interplay between MAMP-triggered and SA-mediated defense responses.";
RL   Plant J. 53:763-775(2008).
RN   [29]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=18266921; DOI=10.1111/j.1365-313x.2008.03439.x;
RA   Lee M.W., Jelenska J., Greenberg J.T.;
RT   "Arabidopsis proteins important for modulating defense responses to
RT   Pseudomonas syringae that secrete HopW1-1.";
RL   Plant J. 54:452-465(2008).
RN   [30]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=20367470; DOI=10.1094/mpmi-23-5-0618;
RA   Louis J., Leung Q., Pegadaraju V., Reese J., Shah J.;
RT   "PAD4-dependent antibiosis contributes to the ssi2-conferred hyper-
RT   resistance to the green peach aphid.";
RL   Mol. Plant Microbe Interact. 23:618-627(2010).
RN   [31]
RP   FUNCTION, INTERACTION WITH EDS1, INDUCTION BY HYALOPERONOSPORA
RP   ARABIDOPSIDIS, AND SUBCELLULAR LOCATION.
RC   STRAIN=cv. Wassilewskija;
RX   PubMed=21434927; DOI=10.1111/j.1469-8137.2011.03675.x;
RA   Rietz S., Stamm A., Malonek S., Wagner S., Becker D., Medina-Escobar N.,
RA   Vlot A.C., Feys B.J., Niefind K., Parker J.E.;
RT   "Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and
RT   dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity.";
RL   New Phytol. 191:107-119(2011).
RN   [32]
RP   INDUCTION BY GREEN PEACH APHID AND TREHALOSE.
RX   PubMed=21426427; DOI=10.1111/j.1365-313x.2011.04583.x;
RA   Singh V., Louis J., Ayre B.G., Reese J.C., Pegadaraju V., Shah J.;
RT   "TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism promotes
RT   Arabidopsis thaliana defense against the phloem-feeding insect Myzus
RT   persicae.";
RL   Plant J. 67:94-104(2011).
RN   [33]
RP   FUNCTION, SUBCELLULAR LOCATION, SUBUNIT, AND INTERACTION WITH EDS1.
RX   PubMed=22072959; DOI=10.1371/journal.ppat.1002318;
RA   Zhu S., Jeong R.-D., Venugopal S.C., Lapchyk L., Navarre D., Kachroo A.,
RA   Kachroo P.;
RT   "SAG101 forms a ternary complex with EDS1 and PAD4 and is required for
RT   resistance signaling against turnip crinkle virus.";
RL   PLoS Pathog. 7:E1002318-E1002318(2011).
RN   [34]
RP   FUNCTION, DISRUPTION PHENOTYPE, INTERACTION WITH VICTR, AND SUBUNIT.
RC   STRAIN=cv. Columbia;
RX   PubMed=23275581; DOI=10.1105/tpc.112.107235;
RA   Kim T.H., Kunz H.H., Bhattacharjee S., Hauser F., Park J., Engineer C.,
RA   Liu A., Ha T., Parker J.E., Gassmann W., Schroeder J.I.;
RT   "Natural variation in small molecule-induced TIR-NB-LRR signaling induces
RT   root growth arrest via EDS1- and PAD4-complexed R protein VICTR in
RT   Arabidopsis.";
RL   Plant Cell 24:5177-5192(2012).
RN   [35]
RP   FUNCTION, DISRUPTION PHENOTYPE, AND MUTAGENESIS OF SER-118.
RX   PubMed=22353573; DOI=10.1104/pp.112.193417;
RA   Louis J., Gobbato E., Mondal H.A., Feys B.J., Parker J.E., Shah J.;
RT   "Discrimination of Arabidopsis PAD4 activities in defense against green
RT   peach aphid and pathogens.";
RL   Plant Physiol. 158:1860-1872(2012).
RN   [36]
RP   INDUCTION BY GREEN PEACH APHID.
RX   PubMed=22990443; DOI=10.4161/psb.22088;
RA   Louis J., Mondal H.A., Shah J.;
RT   "Green peach aphid infestation induces Arabidopsis PHYTOALEXIN-DEFICIENT4
RT   expression at site of insect feeding.";
RL   Plant Signal. Behav. 7:1431-1433(2012).
RN   [37]
RP   FUNCTION, AND DISRUPTION PHENOTYPE.
RX   PubMed=23400705; DOI=10.1104/pp.112.208116;
RA   Wituszynska W., Slesak I., Vanderauwera S., Szechynska-Hebda M., Kornas A.,
RA   Van Der Kelen K., Muhlenbock P., Karpinska B., Mackowski S.,
RA   Van Breusegem F., Karpinski S.;
RT   "Lesion simulating disease1, enhanced disease susceptibility1, and
RT   phytoalexin deficient4 conditionally regulate cellular signaling
RT   homeostasis, photosynthesis, water use efficiency, and seed yield in
RT   Arabidopsis.";
RL   Plant Physiol. 161:1795-1805(2013).
RN   [38]
RP   INTERACTION WITH EDS1, 3D-STRUCTURE MODELING, AND MUTAGENESIS OF MET-16;
RP   LEU-21 AND PHE-143.
RX   PubMed=24331460; DOI=10.1016/j.chom.2013.11.006;
RA   Wagner S., Stuttmann J., Rietz S., Guerois R., Brunstein E., Bautor J.,
RA   Niefind K., Parker J.E.;
RT   "Structural basis for signaling by exclusive EDS1 heteromeric complexes
RT   with SAG101 or PAD4 in plant innate immunity.";
RL   Cell Host Microbe 14:619-630(2013).
CC   -!- FUNCTION: Probable lipase required downstream of MPK4 for accumulation
CC       of the plant defense-potentiating molecule, salicylic acid, thus
CC       contributing to the plant innate immunity against invasive biotrophic
CC       pathogens and to defense mechanisms upon recognition of microbe-
CC       associated molecular patterns (MAMPs). Participates in the regulation
CC       of various molecular and physiological processes that influence
CC       fitness. Together with SG101, required for programmed cell death (PCD)
CC       triggered by NBS-LRR resistance proteins (e.g. RPS4, RPW8.1 and RPW8.2)
CC       in response to the fungal toxin fumonisin B1 (FB1) and avirulent
CC       pathogens (e.g. P.syringae pv. tomato strain DC3000 avrRps4 and pv.
CC       maculicola, turnip crinkle virus (TCV), and H.arabidopsidis isolates
CC       CALA2, EMOY2, EMWA1 and HIND4). Together with EDS1, confers a basal
CC       resistance by restricting the growth of virulent pathogens (e.g.
CC       H.arabidopsidis isolates NOCO2 and EMCO5, E.orontii isolate MGH, and
CC       P.syringae pv. tomato strain DC3000 or expressing HopW1-1 (HopPmaA)).
CC       Necessary for the salicylic acid-(SA-) dependent systemic acquired
CC       resistance (SAR) response that involves expression of multiple defense
CC       responses, including synthesis of the phytoalexin camalexin and
CC       expression of pathogenesis-related genes (e.g. PR1, ALD1, BGL2 and PR5)
CC       in response to pathogens, triggering a signal amplification loop that
CC       increases SA levels via EDS5 and SID2, but, together with EDS1, seems
CC       to repress the ethylene/jasmonic acid (ET/JA) defense pathway. May also
CC       function in response to abiotic stresses such as UV-C light and LSD1-
CC       dependent acclimatization to light conditions that promote excess
CC       excitation energy (EEE), probably by transducing redox signals and
CC       modulating stomatal conductance. Regulates the formation of lysigenous
CC       aerenchyma in hypocotyls in response to hypoxia, maybe via hydrogen
CC       peroxide production. Modulates leaf senescence in insect-infested
CC       tissue and triggers a phloem-based defense mechanism including
CC       antibiosis (e.g. green peach aphid (GPA), M.persicae) to limit phloem
CC       sap uptake and insect growth, thus providing an EDS1-independent basal
CC       resistance to insects. Also involved in regulation of root meristematic
CC       zone-targeted growth arrest together with EDS1 and in a VICTR-dependent
CC       manner. {ECO:0000269|PubMed:10557364, ECO:0000269|PubMed:10796016,
CC       ECO:0000269|PubMed:11041879, ECO:0000269|PubMed:11574472,
CC       ECO:0000269|PubMed:11595797, ECO:0000269|PubMed:11826312,
CC       ECO:0000269|PubMed:11846877, ECO:0000269|PubMed:14617091,
CC       ECO:0000269|PubMed:15347794, ECO:0000269|PubMed:15447647,
CC       ECO:0000269|PubMed:15773856, ECO:0000269|PubMed:16040633,
CC       ECO:0000269|PubMed:16299172, ECO:0000269|PubMed:16353557,
CC       ECO:0000269|PubMed:16813576, ECO:0000269|PubMed:17431038,
CC       ECO:0000269|PubMed:17725549, ECO:0000269|PubMed:18005228,
CC       ECO:0000269|PubMed:18055613, ECO:0000269|PubMed:18266921,
CC       ECO:0000269|PubMed:20367470, ECO:0000269|PubMed:21434927,
CC       ECO:0000269|PubMed:22072959, ECO:0000269|PubMed:22353573,
CC       ECO:0000269|PubMed:23275581, ECO:0000269|PubMed:23400705,
CC       ECO:0000269|PubMed:8725243, ECO:0000269|PubMed:9136026,
CC       ECO:0000269|PubMed:9634589, ECO:0000269|PubMed:9881167}.
CC   -!- SUBUNIT: Part of a nuclear complex made of EDS1, SG101 and PAD4 that
CC       can be redirected to the cytoplasm in the presence of an extranuclear
CC       form of EDS1. Sabilized by direct interaction with EDS1 in infected
CC       leaves. Part of a nuclear protein complex made of VICTR, PAD4 and EDS1
CC       (PubMed:23275581). Interacts with VICTR (PubMed:23275581). Interacts
CC       with EDS1 (PubMed:24331460). {ECO:0000269|PubMed:11574472,
CC       ECO:0000269|PubMed:16040633, ECO:0000269|PubMed:21434927,
CC       ECO:0000269|PubMed:22072959, ECO:0000269|PubMed:23275581,
CC       ECO:0000269|PubMed:24331460}.
CC   -!- INTERACTION:
CC       Q9S745; Q9SU72: EDS1; NbExp=8; IntAct=EBI-1390441, EBI-1390454;
CC   -!- SUBCELLULAR LOCATION: Nucleus. Cytoplasm. Note=Can move to the
CC       cytoplasm when in complex with EDS1.
CC   -!- INDUCTION: By benzothiadiazole (BTH), at site of green peach aphid
CC       feeding (GPA, M.persicae) via TPS11-dependent trehalose accumulation,
CC       and H.arabidopsidis. Induced by P.syringae in a NPR1-independent
CC       manner, and by salicylic acid (SA) in a NPR1-dependent manner.
CC       {ECO:0000269|PubMed:10557364, ECO:0000269|PubMed:11574472,
CC       ECO:0000269|PubMed:16299172, ECO:0000269|PubMed:21426427,
CC       ECO:0000269|PubMed:21434927, ECO:0000269|PubMed:22990443}.
CC   -!- DISRUPTION PHENOTYPE: Impaired camalexin accumulation, reduced
CC       synthesis of salicylic acid (SA) and ethylene (ET), and altered
CC       expression of pathogenesis-related genes (e.g. PR1, ALD1, BGL2 and PR5)
CC       upon some pathogenic infections (e.g. P.syringae) and microbe-
CC       associated molecular patterns (MAMPs) recognition. Loss of the systemic
CC       acquired resistance response. Reduced fitness characterized by lower
CC       seed yield and survival rate. Increased sensitivity to P.syringae,
CC       H.arabidopsidis, turnip crinkle virus (TCV) and E.orontii. These
CC       phenotypes are reversed by SA treatment. Altered sensitivity to
CC       jasmonic acid (JA) and ethylene (ET) signaling. Decreased
CC       susceptibility to the fungal toxin fumonisin B1 (FB1) that mediates
CC       programmed cell death (PCD). Impaired induction of EDS5/SID1 expression
CC       after UV-C light exposure and pathogen attack. Altered LSD1-dependent
CC       acclimatization to light conditions that promote excess excitation
CC       energy (EEE). Impaired formation of lysigenous aerenchyma in response
CC       to hypoxia. Reduced resistance against green peach aphid (GPA,
CC       M.persicae) due to increased phloem sap uptake, reduced accumulation of
CC       antibiotic activity in petiole exudates, and delayed leaf senescence in
CC       insect-infested tissue, including chlorophyll loss, cell death, and
CC       senescence associated genes (SAG) expression. Loss of [5-(3,4-
CC       dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione- (DFPM-)
CC       induced root growth arrest and inhibition of stomatal closing mediated
CC       by abscisic acid (ABA). {ECO:0000269|PubMed:10557364,
CC       ECO:0000269|PubMed:10796016, ECO:0000269|PubMed:11041879,
CC       ECO:0000269|PubMed:11574472, ECO:0000269|PubMed:11595797,
CC       ECO:0000269|PubMed:11826312, ECO:0000269|PubMed:11846877,
CC       ECO:0000269|PubMed:14617091, ECO:0000269|PubMed:15347794,
CC       ECO:0000269|PubMed:15447647, ECO:0000269|PubMed:15773856,
CC       ECO:0000269|PubMed:16299172, ECO:0000269|PubMed:16353557,
CC       ECO:0000269|PubMed:16813576, ECO:0000269|PubMed:17431038,
CC       ECO:0000269|PubMed:17725549, ECO:0000269|PubMed:18005228,
CC       ECO:0000269|PubMed:18055613, ECO:0000269|PubMed:18266921,
CC       ECO:0000269|PubMed:20367470, ECO:0000269|PubMed:22353573,
CC       ECO:0000269|PubMed:23275581, ECO:0000269|PubMed:23400705,
CC       ECO:0000269|PubMed:8725243, ECO:0000269|PubMed:9136026,
CC       ECO:0000269|PubMed:9634589, ECO:0000269|PubMed:9881167}.
CC   -!- SIMILARITY: Belongs to the AB hydrolase superfamily. Lipase family.
CC       {ECO:0000305}.
CC   ---------------------------------------------------------------------------
CC   Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC   Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC   ---------------------------------------------------------------------------
DR   EMBL; AF188329; AAF09479.1; -; mRNA.
DR   EMBL; EF470727; ABR46037.1; -; Genomic_DNA.
DR   EMBL; EF470728; ABR46038.1; -; Genomic_DNA.
DR   EMBL; EF470729; ABR46039.1; -; Genomic_DNA.
DR   EMBL; EF470731; ABR46041.1; -; Genomic_DNA.
DR   EMBL; EF470733; ABR46043.1; -; Genomic_DNA.
DR   EMBL; EF470735; ABR46045.1; -; Genomic_DNA.
DR   EMBL; EF470736; ABR46046.1; -; Genomic_DNA.
DR   EMBL; EF470737; ABR46047.1; -; Genomic_DNA.
DR   EMBL; EF470741; ABR46051.1; -; Genomic_DNA.
DR   EMBL; EF470742; ABR46052.1; -; Genomic_DNA.
DR   EMBL; EF470743; ABR46053.1; -; Genomic_DNA.
DR   EMBL; AL050300; CAB43438.1; -; Genomic_DNA.
DR   EMBL; CP002686; AEE78945.1; -; Genomic_DNA.
DR   EMBL; EU405144; ABZ02805.1; -; Genomic_DNA.
DR   EMBL; EU405145; ABZ02806.1; -; Genomic_DNA.
DR   EMBL; EU405146; ABZ02807.1; -; Genomic_DNA.
DR   EMBL; EU405149; ABZ02810.1; -; Genomic_DNA.
DR   EMBL; EU405150; ABZ02811.1; -; Genomic_DNA.
DR   EMBL; EU405152; ABZ02813.1; -; Genomic_DNA.
DR   EMBL; EU405153; ABZ02814.1; -; Genomic_DNA.
DR   EMBL; EU405155; ABZ02816.1; -; Genomic_DNA.
DR   EMBL; EU405159; ABZ02820.1; -; Genomic_DNA.
DR   EMBL; EU405161; ABZ02822.1; -; Genomic_DNA.
DR   EMBL; EU405162; ABZ02823.1; -; Genomic_DNA.
DR   EMBL; EU405163; ABZ02824.1; -; Genomic_DNA.
DR   EMBL; EU405164; ABZ02825.1; -; Genomic_DNA.
DR   EMBL; EU405173; ABZ02834.1; -; Genomic_DNA.
DR   EMBL; EU405174; ABZ02835.1; -; Genomic_DNA.
DR   EMBL; EU405175; ABZ02836.1; -; Genomic_DNA.
DR   EMBL; EU405177; ABZ02838.1; -; Genomic_DNA.
DR   EMBL; EU405180; ABZ02841.1; -; Genomic_DNA.
DR   EMBL; EU405181; ABZ02842.1; -; Genomic_DNA.
DR   EMBL; EU405183; ABZ02844.1; -; Genomic_DNA.
DR   EMBL; EU405188; ABZ02849.1; -; Genomic_DNA.
DR   EMBL; EU405190; ABZ02851.1; -; Genomic_DNA.
DR   EMBL; EU405192; ABZ02853.1; -; Genomic_DNA.
DR   EMBL; EU405193; ABZ02854.1; -; Genomic_DNA.
DR   EMBL; EU405194; ABZ02855.1; -; Genomic_DNA.
DR   EMBL; EU405195; ABZ02856.1; -; Genomic_DNA.
DR   EMBL; EU405197; ABZ02858.1; -; Genomic_DNA.
DR   EMBL; EU405205; ABZ02866.1; -; Genomic_DNA.
DR   EMBL; EU405206; ABZ02867.1; -; Genomic_DNA.
DR   EMBL; EU405208; ABZ02869.1; -; Genomic_DNA.
DR   EMBL; EU405209; ABZ02870.1; -; Genomic_DNA.
DR   EMBL; EU405210; ABZ02871.1; -; Genomic_DNA.
DR   EMBL; EU405212; ABZ02873.1; -; Genomic_DNA.
DR   EMBL; EU405213; ABZ02874.1; -; Genomic_DNA.
DR   EMBL; EU405214; ABZ02875.1; -; Genomic_DNA.
DR   EMBL; EU405215; ABZ02876.1; -; Genomic_DNA.
DR   EMBL; EU405217; ABZ02878.1; -; Genomic_DNA.
DR   EMBL; EU405219; ABZ02880.1; -; Genomic_DNA.
DR   EMBL; EU405223; ABZ02884.1; -; Genomic_DNA.
DR   EMBL; EU405224; ABZ02885.1; -; Genomic_DNA.
DR   EMBL; EU405228; ABZ02889.1; -; Genomic_DNA.
DR   EMBL; EU405231; ABZ02892.1; -; Genomic_DNA.
DR   EMBL; EU405232; ABZ02893.1; -; Genomic_DNA.
DR   EMBL; EU405237; ABZ02898.1; -; Genomic_DNA.
DR   PIR; T08456; T08456.
DR   RefSeq; NP_190811.1; NM_115103.4.
DR   AlphaFoldDB; Q9S745; -.
DR   SMR; Q9S745; -.
DR   BioGRID; 9726; 2.
DR   ComplexPortal; CPX-1324; EDS1-PAD4 complex, variant EDS1.
DR   ComplexPortal; CPX-1325; EDS1-PAD4-SAG101 complex, variant EDS1.
DR   ComplexPortal; CPX-1618; EDS1-PAD4 complex, variant EDS1B.
DR   ComplexPortal; CPX-1619; EDS1-PAD4-SAG101 complex, variant EDS1B.
DR   IntAct; Q9S745; 1.
DR   STRING; 3702.AT3G52430.1; -.
DR   ESTHER; arath-PAD4; Plant_lipase_EDS1-like.
DR   PaxDb; Q9S745; -.
DR   PRIDE; Q9S745; -.
DR   ProteomicsDB; 226046; -.
DR   EnsemblPlants; AT3G52430.1; AT3G52430.1; AT3G52430.
DR   GeneID; 824408; -.
DR   Gramene; AT3G52430.1; AT3G52430.1; AT3G52430.
DR   KEGG; ath:AT3G52430; -.
DR   Araport; AT3G52430; -.
DR   TAIR; locus:2079939; AT3G52430.
DR   eggNOG; ENOG502SBGF; Eukaryota.
DR   HOGENOM; CLU_016367_2_0_1; -.
DR   InParanoid; Q9S745; -.
DR   OMA; KIFDKWW; -.
DR   OrthoDB; 508556at2759; -.
DR   PhylomeDB; Q9S745; -.
DR   PRO; PR:Q9S745; -.
DR   Proteomes; UP000006548; Chromosome 3.
DR   ExpressionAtlas; Q9S745; baseline and differential.
DR   Genevisible; Q9S745; AT.
DR   GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
DR   GO; GO:0005829; C:cytosol; IDA:ComplexPortal.
DR   GO; GO:0106093; C:EDS1 disease-resistance complex; IDA:ComplexPortal.
DR   GO; GO:0005634; C:nucleus; IDA:UniProtKB.
DR   GO; GO:0016298; F:lipase activity; ISS:TAIR.
DR   GO; GO:0016740; F:transferase activity; IEA:UniProtKB-KW.
DR   GO; GO:0010618; P:aerenchyma formation; IMP:TAIR.
DR   GO; GO:0071327; P:cellular response to trehalose stimulus; IDA:UniProtKB.
DR   GO; GO:0042742; P:defense response to bacterium; IMP:UniProtKB.
DR   GO; GO:0050829; P:defense response to Gram-negative bacterium; IMP:TAIR.
DR   GO; GO:0002213; P:defense response to insect; IMP:TAIR.
DR   GO; GO:0009873; P:ethylene-activated signaling pathway; IEA:UniProtKB-KW.
DR   GO; GO:0060866; P:leaf abscission; IMP:TAIR.
DR   GO; GO:0010150; P:leaf senescence; IMP:TAIR.
DR   GO; GO:0016042; P:lipid catabolic process; IEA:UniProtKB-KW.
DR   GO; GO:0031348; P:negative regulation of defense response; IMP:TAIR.
DR   GO; GO:0010105; P:negative regulation of ethylene-activated signaling pathway; IGI:UniProtKB.
DR   GO; GO:0009626; P:plant-type hypersensitive response; IMP:ComplexPortal.
DR   GO; GO:1901183; P:positive regulation of camalexin biosynthetic process; IMP:UniProtKB.
DR   GO; GO:0010942; P:positive regulation of cell death; IMP:UniProtKB.
DR   GO; GO:1900426; P:positive regulation of defense response to bacterium; IMP:UniProtKB.
DR   GO; GO:1900367; P:positive regulation of defense response to insect; IMP:UniProtKB.
DR   GO; GO:0080151; P:positive regulation of salicylic acid mediated signaling pathway; IGI:UniProtKB.
DR   GO; GO:0010310; P:regulation of hydrogen peroxide metabolic process; IMP:TAIR.
DR   GO; GO:2000022; P:regulation of jasmonic acid mediated signaling pathway; IGI:UniProtKB.
DR   GO; GO:0080142; P:regulation of salicylic acid biosynthetic process; IMP:UniProtKB.
DR   GO; GO:2000031; P:regulation of salicylic acid mediated signaling pathway; IMP:UniProtKB.
DR   GO; GO:0009617; P:response to bacterium; IDA:UniProtKB.
DR   GO; GO:0001666; P:response to hypoxia; IMP:TAIR.
DR   GO; GO:0009625; P:response to insect; IDA:UniProtKB.
DR   GO; GO:0051707; P:response to other organism; IEP:TAIR.
DR   GO; GO:0009751; P:response to salicylic acid; IDA:UniProtKB.
DR   GO; GO:0010225; P:response to UV-C; IMP:UniProtKB.
DR   GO; GO:0009627; P:systemic acquired resistance; IEP:TAIR.
DR   GO; GO:0009862; P:systemic acquired resistance, salicylic acid mediated signaling pathway; IMP:UniProtKB.
DR   Gene3D; 3.40.50.1820; -; 1.
DR   InterPro; IPR029058; AB_hydrolase.
DR   InterPro; IPR041266; EDS1_EP.
DR   InterPro; IPR002921; Fungal_lipase-like.
DR   Pfam; PF18117; EDS1_EP; 1.
DR   Pfam; PF01764; Lipase_3; 1.
DR   SUPFAM; SSF53474; SSF53474; 1.
DR   PROSITE; PS00120; LIPASE_SER; 1.
PE   1: Evidence at protein level;
KW   Cytoplasm; Ethylene signaling pathway; Hydrolase; Hypersensitive response;
KW   Jasmonic acid signaling pathway; Lipid degradation; Lipid metabolism;
KW   Nucleus; Plant defense; Reference proteome; Transferase.
FT   CHAIN           1..541
FT                   /note="Lipase-like PAD4"
FT                   /id="PRO_0000429488"
FT   ACT_SITE        118
FT                   /note="Nucleophile"
FT                   /evidence="ECO:0000250|UniProtKB:P19515"
FT   ACT_SITE        178
FT                   /note="Charge relay system"
FT                   /evidence="ECO:0000250|UniProtKB:P19515"
FT   ACT_SITE        229
FT                   /note="Charge relay system"
FT                   /evidence="ECO:0000250|UniProtKB:P19515"
FT   MUTAGEN         16
FT                   /note="M->A: Loss of interaction with EDS1; when associated
FT                   with S-21. Loss of interaction with EDS1; when associated
FT                   with S-21 and A-143."
FT                   /evidence="ECO:0000269|PubMed:24331460"
FT   MUTAGEN         21
FT                   /note="L->S: Loss of interaction with EDS1; when associated
FT                   with A-16. Loss of interaction with EDS1; when associated
FT                   with A-16 and A-143."
FT                   /evidence="ECO:0000269|PubMed:24331460"
FT   MUTAGEN         118
FT                   /note="S->A: Loss of antibiosis and deterrence against
FT                   green peach aphid (GPA, M.persicae) feeding, but normal
FT                   leaf senescence and plant defense against pathogens."
FT                   /evidence="ECO:0000269|PubMed:22353573"
FT   MUTAGEN         143
FT                   /note="F->A: Loss of interaction with EDS1; when associated
FT                   with A-16 and S-21."
FT                   /evidence="ECO:0000269|PubMed:24331460"
SQ   SEQUENCE   541 AA;  60985 MW;  D6D5D3EBB522C11A CRC64;
     MDDCRFETSE LQASVMISTP LFTDSWSSCN TANCNGSIKI HDIAGITYVA IPAVSMIQLG
     NLVGLPVTGD VLFPGLSSDE PLPMVDAAIL KLFLQLKIKE GLELELLGKK LVVITGHSTG
     GALAAFTALW LLSQSSPPSF RVFCITFGSP LLGNQSLSTS ISRSRLAHNF CHVVSIHDLV
     PRSSNEQFWP FGTYLFCSDK GGVCLDNAGS VRLMFNILNT TATQNTEEHQ RYGHYVFTLS
     HMFLKSRSFL GGSIPDNSYQ AGVALAVEAL GFSNDDTSGV LVKECIETAT RIVRAPILRS
     AELANELASV LPARLEIQWY KDRCDASEEQ LGYYDFFKRY SLKRDFKVNM SRIRLAKFWD
     TVIKMVETNE LPFDFHLGKK WIYASQFYQL LAEPLDIANF YKNRDIKTGG HYLEGNRPKR
     YEVIDKWQKG VKVPEECVRS RYASTTQDTC FWAKLEQAKE WLDEARKESS DPQRRSLLRE
     KIVPFESYAN TLVTKKEVSL DVKAKNSSYS VWEANLKEFK CKMGYENEIE MVVDESDAME
     T
 
 
维奥蛋白资源库 - 中文蛋白资源 CopyRight © 2010-2024