位置:首页 > 蛋白库 > POLG_HCVH4
POLG_HCVH4
ID   POLG_HCVH4              Reviewed;         523 AA.
AC   Q01404;
DT   01-JUL-1993, integrated into UniProtKB/Swiss-Prot.
DT   23-JAN-2007, sequence version 4.
DT   03-AUG-2022, entry version 126.
DE   RecName: Full=Genome polyprotein;
DE   Contains:
DE     RecName: Full=Core protein precursor;
DE     AltName: Full=Capsid protein C;
DE     AltName: Full=p23;
DE   Contains:
DE     RecName: Full=Mature core protein;
DE     AltName: Full=p21;
DE   Contains:
DE     RecName: Full=Envelope glycoprotein E1;
DE     AltName: Full=gp32;
DE     AltName: Full=gp35;
DE   Contains:
DE     RecName: Full=Envelope glycoprotein E2;
DE     AltName: Full=NS1;
DE     AltName: Full=gp68;
DE     AltName: Full=gp70;
DE   Flags: Fragment;
OS   Hepatitis C virus (isolate HCV-476) (HCV).
OC   Viruses; Riboviria; Orthornavirae; Kitrinoviricota; Flasuviricetes;
OC   Amarillovirales; Flaviviridae; Hepacivirus.
OX   NCBI_TaxID=31643;
OH   NCBI_TaxID=9606; Homo sapiens (Human).
RN   [1]
RP   NUCLEOTIDE SEQUENCE [GENOMIC RNA].
RX   PubMed=1383400; DOI=10.1099/0022-1317-73-10-2725;
RA   Abe K., Inchauspe G., Fujisawa K.;
RT   "Genomic characterization and mutation rate of hepatitis C virus isolated
RT   from a patient who contracted hepatitis during an epidemic of non-A, non-B
RT   hepatitis in Japan.";
RL   J. Gen. Virol. 73:2725-2729(1992).
RN   [2]
RP   REVIEW.
RX   PubMed=10718937; DOI=10.1046/j.1365-2893.2000.00201.x;
RA   McLauchlan J.;
RT   "Properties of the hepatitis C virus core protein: a structural protein
RT   that modulates cellular processes.";
RL   J. Viral Hepat. 7:2-14(2000).
RN   [3]
RP   REVIEW.
RX   PubMed=14752815; DOI=10.1002/hep.20032;
RA   Penin F., Dubuisson J., Rey F.A., Moradpour D., Pawlotsky J.-M.;
RT   "Structural biology of hepatitis C virus.";
RL   Hepatology 39:5-19(2004).
CC   -!- FUNCTION: [Mature core protein]: Packages viral RNA to form a viral
CC       nucleocapsid, and promotes virion budding (Probable). Participates in
CC       the viral particle production as a result of its interaction with the
CC       non-structural protein 5A (By similarity). Binds RNA and may function
CC       as a RNA chaperone to induce the RNA structural rearrangements taking
CC       place during virus replication (By similarity). Modulates viral
CC       translation initiation by interacting with viral IRES and 40S ribosomal
CC       subunit (By similarity). Affects various cell signaling pathways, host
CC       immunity and lipid metabolism (Probable). Prevents the establishment of
CC       cellular antiviral state by blocking the interferon-alpha/beta (IFN-
CC       alpha/beta) and IFN-gamma signaling pathways and by blocking the
CC       formation of phosphorylated STAT1 and promoting ubiquitin-mediated
CC       proteasome-dependent degradation of STAT1 (By similarity). Activates
CC       STAT3 leading to cellular transformation (By similarity). Regulates the
CC       activity of cellular genes, including c-myc and c-fos (By similarity).
CC       May repress the promoter of p53, and sequester CREB3 and SP110 isoform
CC       3/Sp110b in the cytoplasm (By similarity). Represses cell cycle
CC       negative regulating factor CDKN1A, thereby interrupting an important
CC       check point of normal cell cycle regulation (By similarity). Targets
CC       transcription factors involved in the regulation of inflammatory
CC       responses and in the immune response: suppresses TNF-induced NF-kappa-B
CC       activation, and activates AP-1 (By similarity). Binds to dendritic
CC       cells (DCs) via C1QR1, resulting in down-regulation of T-lymphocytes
CC       proliferation (By similarity). Alters lipid metabolism by interacting
CC       with hepatocellular proteins involved in lipid accumulation and storage
CC       (By similarity). Induces up-regulation of FAS promoter activity, and
CC       thereby contributes to the increased triglyceride accumulation in
CC       hepatocytes (steatosis) (By similarity). {ECO:0000250|UniProtKB:P26662,
CC       ECO:0000250|UniProtKB:P26664, ECO:0000250|UniProtKB:P27958,
CC       ECO:0000250|UniProtKB:P29846, ECO:0000250|UniProtKB:Q99IB8,
CC       ECO:0000305}.
CC   -!- FUNCTION: [Envelope glycoprotein E1]: Forms a heterodimer with envelope
CC       glycoprotein E2, which mediates virus attachment to the host cell,
CC       virion internalization through clathrin-dependent endocytosis and
CC       fusion with host membrane (By similarity). Fusion with the host cell is
CC       most likely mediated by both E1 and E2, through conformational
CC       rearrangements of the heterodimer required for fusion rather than a
CC       classical class II fusion mechanism (By similarity). E1/E2 heterodimer
CC       binds host apolipoproteins such as APOB and ApoE thereby forming a
CC       lipo-viro-particle (LVP) (By similarity). APOE associated to the LVP
CC       allows the initial virus attachment to cell surface receptors such as
CC       the heparan sulfate proteoglycans (HSPGs), syndecan-1 (SDC1), syndecan-
CC       1 (SDC2), the low-density lipoprotein receptor (LDLR) and scavenger
CC       receptor class B type I (SCARB1) (By similarity). The cholesterol
CC       transfer activity of SCARB1 allows E2 exposure and binding of E2 to
CC       SCARB1 and the tetraspanin CD81 (By similarity). E1/E2 heterodimer
CC       binding on CD81 activates the epithelial growth factor receptor (EGFR)
CC       signaling pathway (By similarity). Diffusion of the complex E1-E2-EGFR-
CC       SCARB1-CD81 to the cell lateral membrane allows further interaction
CC       with Claudin 1 (CLDN1) and occludin (OCLN) to finally trigger HCV entry
CC       (By similarity). {ECO:0000250|UniProtKB:P27958}.
CC   -!- FUNCTION: [Envelope glycoprotein E2]: Forms a heterodimer with envelope
CC       glycoprotein E1, which mediates virus attachment to the host cell,
CC       virion internalization through clathrin-dependent endocytosis and
CC       fusion with host membrane (By similarity). Fusion with the host cell is
CC       most likely mediated by both E1 and E2, through conformational
CC       rearrangements of the heterodimer required for fusion rather than a
CC       classical class II fusion mechanism (By similarity). The interaction
CC       between envelope glycoprotein E2 and host apolipoprotein E/APOE allows
CC       the proper assembly, maturation and infectivity of the viral particles
CC       (By similarity). This interaction is probably promoted via the up-
CC       regulation of cellular autophagy by the virus (By similarity). E1/E2
CC       heterodimer binds host apolipoproteins such as APOB and APOE thereby
CC       forming a lipo-viro-particle (LVP) (By similarity). APOE associated to
CC       the LVP allows the initial virus attachment to cell surface receptors
CC       such as the heparan sulfate proteoglycans (HSPGs), syndecan-1 (SDC1),
CC       syndecan-1 (SDC2), the low-density lipoprotein receptor (LDLR) and
CC       scavenger receptor class B type I (SCARB1) (By similarity). The
CC       cholesterol transfer activity of SCARB1 allows E2 exposure and binding
CC       of E2 to SCARB1 and the tetraspanin CD81 (By similarity). E1/E2
CC       heterodimer binding on CD81 activates the epithelial growth factor
CC       receptor (EGFR) signaling pathway (By similarity). Diffusion of the
CC       complex E1-E2-EGFR-SCARB1-CD81 to the cell lateral membrane allows
CC       further interaction with Claudin 1 (CLDN1) and occludin (OCLN) to
CC       finally trigger HCV entry (By similarity). Inhibits host EIF2AK2/PKR
CC       activation, preventing the establishment of an antiviral state (By
CC       similarity). Viral ligand for CD209/DC-SIGN and CLEC4M/DC-SIGNR, which
CC       are respectively found on dendritic cells (DCs), and on liver
CC       sinusoidal endothelial cells and macrophage-like cells of lymph node
CC       sinuses (By similarity). These interactions allow the capture of
CC       circulating HCV particles by these cells and subsequent facilitated
CC       transmission to permissive cells such as hepatocytes and lymphocyte
CC       subpopulations (By similarity). {ECO:0000250|UniProtKB:P26664,
CC       ECO:0000250|UniProtKB:P27958}.
CC   -!- SUBUNIT: [Mature core protein]: Homooligomer (By similarity). Interacts
CC       with E1 (via C-terminus) (By similarity). Interacts with the non-
CC       structural protein 5A (By similarity). Interacts (via N-terminus) with
CC       host STAT1 (via SH2 domain); this interaction results in decreased
CC       STAT1 phosphorylation and ubiquitin-mediated proteasome-dependent STAT1
CC       degradation, leading to decreased IFN-stimulated gene transcription (By
CC       similarity). Interacts with host STAT3; this interaction constitutively
CC       activates STAT3 (By similarity). Interacts with host LTBR receptor (By
CC       similarity). Interacts with host TNFRSF1A receptor and possibly induces
CC       apoptosis (By similarity). Interacts with host HNRPK (By similarity).
CC       Interacts with host YWHAE (By similarity). Interacts with host
CC       UBE3A/E6AP (By similarity). Interacts with host DDX3X (By similarity).
CC       Interacts with host APOA2 (By similarity). Interacts with host RXRA
CC       protein (By similarity). Interacts with host SP110 isoform 3/Sp110b;
CC       this interaction sequesters the transcriptional corepressor SP110 away
CC       from the nucleus (By similarity). Interacts with host CREB3 nuclear
CC       transcription protein; this interaction triggers cell transformation
CC       (By similarity). Interacts with host ACY3 (By similarity). Interacts
CC       with host C1QR1 (By similarity). Interacts with host RBM24; this
CC       interaction, which enhances the interaction of the mature core protein
CC       with 5'-UTR, may inhibit viral translation and favor replication (By
CC       similarity). Interacts with host EIF2AK2/PKR; this interaction induces
CC       the autophosphorylation of EIF2AK2 (By similarity). Part of the viral
CC       assembly initiation complex composed of NS2, E1, E2, NS3, NS4A, NS5A
CC       and the mature core protein (By similarity).
CC       {ECO:0000250|UniProtKB:P26662, ECO:0000250|UniProtKB:P26664,
CC       ECO:0000250|UniProtKB:P27958, ECO:0000250|UniProtKB:P29846,
CC       ECO:0000250|UniProtKB:Q03463, ECO:0000250|UniProtKB:Q5EG65,
CC       ECO:0000250|UniProtKB:Q99IB8}.
CC   -!- SUBUNIT: [Envelope glycoprotein E1]: Forms a heterodimer with envelope
CC       glycoprotein E2 (By similarity). Interacts with mature core protein (By
CC       similarity). Interacts with protease NS2 (By similarity). The
CC       heterodimer E1/E2 interacts with host CLDN1; this interaction plays a
CC       role in viral entry into host cell (By similarity). Interacts with host
CC       SPSB2 (via C-terminus) (By similarity). Part of the viral assembly
CC       initiation complex composed of NS2, E1, E2, NS3, NS4A, NS5A and the
CC       mature core protein (By similarity). {ECO:0000250|UniProtKB:P27958,
CC       ECO:0000250|UniProtKB:Q99IB8}.
CC   -!- SUBUNIT: [Envelope glycoprotein E2]: Forms a heterodimer with envelope
CC       glycoprotein E1 (By similarity). Interacts with host CD81 and SCARB1
CC       receptors; these interactions play a role in viral entry into host cell
CC       (By similarity). Interacts with host EIF2AK2/PKR; this interaction
CC       inhibits EIF2AK2 and probably allows the virus to evade the innate
CC       immune response (By similarity). Interacts with host CD209/DC-SIGN and
CC       CLEC4M/DC-SIGNR (By similarity). Interact with host SPCS1; this
CC       interaction is essential for viral particle assembly (By similarity).
CC       Interacts with protease NS2 (By similarity). The heterodimer E1/E2
CC       interacts with host CLDN1; this interaction plays a role in viral entry
CC       into host cell (By similarity). Part of the viral assembly initiation
CC       complex composed of NS2, E1, E2, NS3, NS4A, NS5A and the mature core
CC       protein (By similarity). {ECO:0000250|UniProtKB:P27958,
CC       ECO:0000250|UniProtKB:Q99IB8}.
CC   -!- SUBCELLULAR LOCATION: [Core protein precursor]: Host endoplasmic
CC       reticulum membrane {ECO:0000250|UniProtKB:P26664}; Single-pass membrane
CC       protein {ECO:0000255}. Host mitochondrion membrane
CC       {ECO:0000250|UniProtKB:P26664}; Single-pass type I membrane protein
CC       {ECO:0000255}. Note=The C-terminal transmembrane domain of the core
CC       protein precursor contains an ER signal leading the nascent polyprotein
CC       to the ER membrane.
CC   -!- SUBCELLULAR LOCATION: [Mature core protein]: Virion
CC       {ECO:0000250|UniProtKB:Q99IB8}. Host cytoplasm
CC       {ECO:0000250|UniProtKB:Q99IB8}. Host nucleus
CC       {ECO:0000250|UniProtKB:Q01403}. Host lipid droplet
CC       {ECO:0000250|UniProtKB:Q99IB8}. Note=Only a minor proportion of core
CC       protein is present in the nucleus (By similarity). Probably present on
CC       the surface of lipid droplets (By similarity).
CC       {ECO:0000250|UniProtKB:P27958}.
CC   -!- SUBCELLULAR LOCATION: [Envelope glycoprotein E1]: Virion membrane
CC       {ECO:0000305}; Single-pass type I membrane protein {ECO:0000305}. Host
CC       endoplasmic reticulum membrane; Single-pass type I membrane protein
CC       {ECO:0000250|UniProtKB:P27958}. Note=The C-terminal transmembrane
CC       domain acts as a signal sequence and forms a hairpin structure before
CC       cleavage by host signal peptidase (By similarity). After cleavage, the
CC       membrane sequence is retained at the C-terminus of the protein, serving
CC       as ER membrane anchor (By similarity). A reorientation of the second
CC       hydrophobic stretch occurs after cleavage producing a single reoriented
CC       transmembrane domain (By similarity). These events explain the final
CC       topology of the protein (By similarity).
CC       {ECO:0000250|UniProtKB:P27958}.
CC   -!- SUBCELLULAR LOCATION: [Envelope glycoprotein E2]: Virion membrane
CC       {ECO:0000305}; Single-pass type I membrane protein {ECO:0000305}. Host
CC       endoplasmic reticulum membrane; Single-pass type I membrane protein
CC       {ECO:0000250|UniProtKB:P27958}. Host lipid droplet
CC       {ECO:0000250|UniProtKB:Q9WMX2}. Note=The C-terminal transmembrane
CC       domain acts as a signal sequence and forms a hairpin structure before
CC       cleavage by host signal peptidase (By similarity). After cleavage, the
CC       membrane sequence is retained at the C-terminus of the protein, serving
CC       as ER membrane anchor (By similarity). A reorientation of the second
CC       hydrophobic stretch occurs after cleavage producing a single reoriented
CC       transmembrane domain (By similarity). These events explain the final
CC       topology of the protein (By similarity).
CC       {ECO:0000250|UniProtKB:P27958}.
CC   -!- DOMAIN: [Envelope glycoprotein E1]: The transmembrane regions of
CC       envelope E1 and E2 glycoproteins are involved in heterodimer formation,
CC       ER localization, and assembly of these proteins.
CC       {ECO:0000250|UniProtKB:P27958}.
CC   -!- DOMAIN: [Envelope glycoprotein E2]: The transmembrane regions of
CC       envelope E1 and E2 glycoproteins are involved in heterodimer formation,
CC       ER localization, and assembly of these proteins (By similarity).
CC       Envelope E2 glycoprotein contain two highly variable regions called
CC       hypervariable region 1 and 2 (HVR1 and HVR2) (By similarity). E2 also
CC       contain two segments involved in CD81-binding (By similarity). HVR1 is
CC       implicated in the SCARB1-mediated cell entry and probably acts as a
CC       regulator of the association of particles with lipids (By similarity).
CC       {ECO:0000250|UniProtKB:P26663, ECO:0000250|UniProtKB:P27958}.
CC   -!- PTM: [Genome polyprotein]: Specific enzymatic cleavages in vivo yield
CC       mature proteins (By similarity). The structural proteins, core, E1, E2
CC       and p7 are produced by proteolytic processing by host signal peptidases
CC       (By similarity). The core protein precursor is synthesized as a 23 kDa,
CC       which is retained in the ER membrane through the hydrophobic signal
CC       peptide (By similarity). Cleavage by the signal peptidase releases the
CC       21 kDa mature core protein (By similarity). The cleavage of the core
CC       protein precursor occurs between aminoacids 176 and 188 but the exact
CC       cleavage site is not known (By similarity). Some degraded forms of the
CC       core protein appear as well during the course of infection (By
CC       similarity). The other proteins (p7, NS2, NS3, NS4A, NS4B, NS5A and
CC       NS5B) are cleaved by the viral proteases (By similarity).
CC       Autoprocessing between NS2 and NS3 is mediated by the NS2 cysteine
CC       protease catalytic domain and regulated by the NS3 N-terminal domain
CC       (By similarity). {ECO:0000250|UniProtKB:P26664,
CC       ECO:0000250|UniProtKB:P27958}.
CC   -!- PTM: [Mature core protein]: Phosphorylated by host PKC and PKA.
CC       {ECO:0000250|UniProtKB:Q01403}.
CC   -!- PTM: [Mature core protein]: Ubiquitinated; mediated by UBE3A and
CC       leading to core protein subsequent proteasomal degradation.
CC       {ECO:0000250|UniProtKB:Q03463}.
CC   -!- PTM: [Envelope glycoprotein E1]: Highly N-glycosylated.
CC       {ECO:0000250|UniProtKB:P27958}.
CC   -!- PTM: [Envelope glycoprotein E2]: Highly N-glycosylated.
CC       {ECO:0000250|UniProtKB:P27958}.
CC   -!- MISCELLANEOUS: Viral particle assembly takes place at the surface of
CC       ER-derived membranes in close proximity to lipid droplets. NS2
CC       associates with E1/E2 glycoproteins, NS3 and NS5A, which interacts with
CC       the viral RNA and core protein to promote genome encapsidation. The
CC       nucleocapsid buds at the ER membrane where E1/E2 glycoproteins are
CC       anchored and afterward associate with nascent lipid droplet to acquire
CC       APOE and APOC. Secretion of viral particles is probably regulated by
CC       viroporin p7. {ECO:0000305}.
CC   -!- MISCELLANEOUS: [Mature core protein]: Exerts viral interference on
CC       hepatitis B virus when HCV and HBV coinfect the same cell, by
CC       suppressing HBV gene expression, RNA encapsidation and budding.
CC       {ECO:0000250|UniProtKB:P26662}.
CC   -!- SIMILARITY: Belongs to the hepacivirus polyprotein family.
CC       {ECO:0000305}.
CC   -!- CAUTION: The core gene probably also codes for alternative reading
CC       frame proteins (ARFPs). Many functions depicted for the core protein
CC       might belong to the ARFPs. {ECO:0000305}.
CC   -!- WEB RESOURCE: Name=Virus Pathogen Resource;
CC       URL="https://www.viprbrc.org/brc/home.spg?decorator=flavi_hcv";
CC   ---------------------------------------------------------------------------
CC   Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC   Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC   ---------------------------------------------------------------------------
DR   EMBL; D10688; BAA01530.1; ALT_TERM; Genomic_RNA.
DR   SMR; Q01404; -.
DR   PRIDE; Q01404; -.
DR   GO; GO:0044167; C:host cell endoplasmic reticulum membrane; IEA:UniProtKB-SubCell.
DR   GO; GO:0044186; C:host cell lipid droplet; IEA:UniProtKB-SubCell.
DR   GO; GO:0044191; C:host cell mitochondrial membrane; IEA:UniProtKB-SubCell.
DR   GO; GO:0042025; C:host cell nucleus; IEA:UniProtKB-SubCell.
DR   GO; GO:0016021; C:integral component of membrane; IEA:UniProtKB-KW.
DR   GO; GO:0019031; C:viral envelope; IEA:UniProtKB-KW.
DR   GO; GO:0019013; C:viral nucleocapsid; IEA:UniProtKB-KW.
DR   GO; GO:0055036; C:virion membrane; IEA:UniProtKB-SubCell.
DR   GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
DR   GO; GO:0005198; F:structural molecule activity; IEA:InterPro.
DR   GO; GO:0075512; P:clathrin-dependent endocytosis of virus by host cell; IEA:UniProtKB-KW.
DR   GO; GO:0039654; P:fusion of virus membrane with host endosome membrane; IEA:UniProtKB-KW.
DR   GO; GO:0019062; P:virion attachment to host cell; IEA:UniProtKB-KW.
DR   Gene3D; 4.10.710.10; -; 1.
DR   InterPro; IPR002521; HCV_Core_C.
DR   InterPro; IPR044896; HCV_core_chain_A.
DR   InterPro; IPR002522; HCV_core_N.
DR   InterPro; IPR002519; HCV_Env.
DR   InterPro; IPR002531; HCV_NS1.
DR   Pfam; PF01543; HCV_capsid; 1.
DR   Pfam; PF01542; HCV_core; 1.
DR   Pfam; PF01539; HCV_env; 1.
DR   Pfam; PF01560; HCV_NS1; 1.
PE   3: Inferred from homology;
KW   Acetylation; Apoptosis; Capsid protein;
KW   Clathrin-mediated endocytosis of virus by host;
KW   Fusion of virus membrane with host endosomal membrane;
KW   Fusion of virus membrane with host membrane; Glycoprotein; Host cytoplasm;
KW   Host endoplasmic reticulum; Host lipid droplet; Host membrane;
KW   Host mitochondrion; Host nucleus; Host-virus interaction;
KW   Interferon antiviral system evasion; Membrane; Oncogene; Phosphoprotein;
KW   Ribonucleoprotein; RNA-binding; Transmembrane; Transmembrane helix;
KW   Ubl conjugation; Viral attachment to host cell; Viral envelope protein;
KW   Viral nucleoprotein; Viral penetration into host cytoplasm; Virion;
KW   Virus endocytosis by host; Virus entry into host cell.
FT   INIT_MET        1
FT                   /note="Removed; by host"
FT                   /evidence="ECO:0000250|UniProtKB:P26664"
FT   CHAIN           2..>523
FT                   /note="Genome polyprotein"
FT                   /id="PRO_0000450904"
FT   CHAIN           2..191
FT                   /note="Core protein precursor"
FT                   /id="PRO_0000037578"
FT   CHAIN           2..177
FT                   /note="Mature core protein"
FT                   /id="PRO_0000037579"
FT   PROPEP          178..191
FT                   /note="ER anchor for the core protein, removed in mature
FT                   form by host signal peptidase"
FT                   /id="PRO_0000037580"
FT   CHAIN           192..383
FT                   /note="Envelope glycoprotein E1"
FT                   /id="PRO_0000037581"
FT   CHAIN           384..>523
FT                   /note="Envelope glycoprotein E2"
FT                   /id="PRO_0000037582"
FT   TOPO_DOM        2..168
FT                   /note="Cytoplasmic"
FT                   /evidence="ECO:0000255"
FT   TRANSMEM        169..189
FT                   /note="Helical"
FT                   /evidence="ECO:0000255"
FT   TOPO_DOM        190..358
FT                   /note="Lumenal"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   TRANSMEM        359..379
FT                   /note="Helical"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   TOPO_DOM        380..>523
FT                   /note="Lumenal"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   REGION          2..75
FT                   /note="Disordered"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   REGION          2..59
FT                   /note="Interaction with DDX3X"
FT                   /evidence="ECO:0000250|UniProtKB:Q5EG65"
FT   REGION          2..58
FT                   /note="Interaction with EIF2AK2/PKR"
FT                   /evidence="ECO:0000250|UniProtKB:P26662"
FT   REGION          2..23
FT                   /note="Interaction with STAT1"
FT                   /evidence="ECO:0000250|UniProtKB:P26662"
FT   REGION          112..152
FT                   /note="Important for endoplasmic reticulum and
FT                   mitochondrial localization"
FT                   /evidence="ECO:0000250|UniProtKB:P26662"
FT   REGION          122..173
FT                   /note="Interaction with APOA2"
FT                   /evidence="ECO:0000250|UniProtKB:P29846"
FT   REGION          164..167
FT                   /note="Important for lipid droplets localization"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   REGION          265..296
FT                   /note="Important for fusion"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   REGION          385..411
FT                   /note="HVR1"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   REGION          474..479
FT                   /note="HVR2"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   REGION          480..493
FT                   /note="CD81-binding 1"
FT                   /evidence="ECO:0000250|UniProtKB:P26663"
FT   MOTIF           5..13
FT                   /note="Nuclear localization signal"
FT                   /evidence="ECO:0000250|UniProtKB:Q99IB8"
FT   MOTIF           38..43
FT                   /note="Nuclear localization signal"
FT                   /evidence="ECO:0000250|UniProtKB:Q99IB8"
FT   MOTIF           58..64
FT                   /note="Nuclear localization signal"
FT                   /evidence="ECO:0000250|UniProtKB:Q99IB8"
FT   MOTIF           66..71
FT                   /note="Nuclear localization signal"
FT                   /evidence="ECO:0000250|UniProtKB:Q99IB8"
FT   COMPBIAS        47..69
FT                   /note="Basic and acidic residues"
FT                   /evidence="ECO:0000256|SAM:MobiDB-lite"
FT   SITE            177..178
FT                   /note="Cleavage; by host signal peptide peptidase"
FT                   /evidence="ECO:0000250|UniProtKB:P26662"
FT   SITE            191..192
FT                   /note="Cleavage; by host signal peptidase"
FT                   /evidence="ECO:0000250|UniProtKB:P26662"
FT   SITE            383..384
FT                   /note="Cleavage; by host signal peptidase"
FT                   /evidence="ECO:0000250|UniProtKB:P26662"
FT   MOD_RES         2
FT                   /note="N-acetylserine; by host"
FT                   /evidence="ECO:0000250|UniProtKB:Q913V3"
FT   MOD_RES         53
FT                   /note="Phosphoserine; by host"
FT                   /evidence="ECO:0000250|UniProtKB:Q01403"
FT   MOD_RES         99
FT                   /note="Phosphoserine; by host"
FT                   /evidence="ECO:0000250|UniProtKB:Q01403"
FT   MOD_RES         116
FT                   /note="Phosphoserine; by host PKA"
FT                   /evidence="ECO:0000250|UniProtKB:Q01403"
FT   CARBOHYD        196
FT                   /note="N-linked (GlcNAc...) asparagine; by host"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   CARBOHYD        209
FT                   /note="N-linked (GlcNAc...) asparagine; by host"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   CARBOHYD        234
FT                   /note="N-linked (GlcNAc...) asparagine; by host"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   CARBOHYD        250
FT                   /note="N-linked (GlcNAc...) asparagine; by host"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   CARBOHYD        305
FT                   /note="N-linked (GlcNAc...) asparagine; by host"
FT                   /evidence="ECO:0000255"
FT   CARBOHYD        418
FT                   /note="N-linked (GlcNAc...) (high mannose) asparagine; by
FT                   host"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   CARBOHYD        424
FT                   /note="N-linked (GlcNAc...) (high mannose) asparagine; by
FT                   host"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   CARBOHYD        431
FT                   /note="N-linked (GlcNAc...) (high mannose) asparagine; by
FT                   host"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   CARBOHYD        449
FT                   /note="N-linked (GlcNAc...) (high mannose) asparagine; by
FT                   host"
FT                   /evidence="ECO:0000250|UniProtKB:P27958"
FT   NON_TER         523
SQ   SEQUENCE   523 AA;  56918 MW;  5F7C4B1A135246CF CRC64;
     MSTNPKPQRK TKRNTNRRPQ DVKFPGGGQI VGGVYLLTRR GPRLGVRATR KTSERSQPRG
     RRQPIPKARR PEGRAWAQPG YPWPLYGNEG LGWAGWLLSP RGSRPSWGPT DPRRRSRNLG
     KVIDTLTCGF ADLMGYIPLV GAPLGGASRA LAHGVRVLED GVNYATGNLP GCSFSIFLSA
     LMSCLTAPAS AYEVRNVSGI YHVTNDCSNS SIAYEAAGMI MHTPGCVPCV REDNSSRCWV
     ALTPTLAARN ASVPTTTIRR HVDLLVGAAT LCSAMYVGDL CGSVFLVSQL ITFSPRRYET
     VQDCNCSLYP GHVSGHRMAW DMMMNWSPTA ALVVSQLLRI PQAVVDIVAG AHWGVLAGLA
     YYPMVGNWAK VLIVMLLFAG VDGANTHTVG GTEGFTTQRF TSLFTLGPSQ KIQLINTNGS
     WHINRTALNC NDSFKTGFLA ALFYVHKFNA SGCPEHMASC RPIDKFDQGW GPVTYAEPSI
     SEQRPYCWHY APRPCGTIPA SEVCGPVYCF TPSPVVVGTT DRF
 
 
维奥蛋白资源库 - 中文蛋白资源 CopyRight © 2010-2024