位置:首页 > 蛋白库 > POLN_AURAV
POLN_AURAV
ID   POLN_AURAV              Reviewed;        2499 AA.
AC   Q86924;
DT   30-MAY-2006, integrated into UniProtKB/Swiss-Prot.
DT   10-APR-2019, sequence version 3.
DT   03-AUG-2022, entry version 132.
DE   RecName: Full=Polyprotein P1234;
DE            Short=P1234;
DE   AltName: Full=Non-structural polyprotein;
DE   Contains:
DE     RecName: Full=Polyprotein P123';
DE              Short=P123';
DE   Contains:
DE     RecName: Full=Polyprotein P123;
DE              Short=P123;
DE   Contains:
DE     RecName: Full=mRNA-capping enzyme nsP1;
DE              EC=2.1.1.- {ECO:0000250|UniProtKB:P27282};
DE              EC=2.7.7.- {ECO:0000250|UniProtKB:P03317};
DE     AltName: Full=Non-structural protein 1;
DE   Contains:
DE     RecName: Full=Protease nsP2;
DE              EC=3.1.3.33 {ECO:0000250|UniProtKB:P08411};
DE              EC=3.4.22.- {ECO:0000250|UniProtKB:Q8JUX6};
DE              EC=3.6.1.15 {ECO:0000250|UniProtKB:Q8JUX6};
DE              EC=3.6.4.13 {ECO:0000250|UniProtKB:Q8JUX6};
DE     AltName: Full=Non-structural protein 2;
DE              Short=nsP2;
DE   Contains:
DE     RecName: Full=Non-structural protein 3';
DE              Short=nsP3';
DE              EC=3.1.3.84 {ECO:0000305};
DE   Contains:
DE     RecName: Full=Non-structural protein 3;
DE              Short=nsP3;
DE              EC=3.1.3.84 {ECO:0000250|UniProtKB:Q8JUX6};
DE   Contains:
DE     RecName: Full=RNA-directed RNA polymerase nsP4;
DE              EC=2.7.7.19 {ECO:0000250|UniProtKB:P03317};
DE              EC=2.7.7.48 {ECO:0000255|PROSITE-ProRule:PRU00539};
DE     AltName: Full=Non-structural protein 4;
DE              Short=nsP4;
OS   Aura virus (AURAV).
OC   Viruses; Riboviria; Orthornavirae; Kitrinoviricota; Alsuviricetes;
OC   Martellivirales; Togaviridae; Alphavirus.
OX   NCBI_TaxID=44158;
OH   NCBI_TaxID=7158; Aedes.
RN   [1]
RP   NUCLEOTIDE SEQUENCE [GENOMIC RNA].
RX   PubMed=7747434; DOI=10.1006/viro.1995.1193;
RA   Rumenapf T., Strauss E.G., Strauss J.H.;
RT   "Aura virus is a New World representative of Sindbis-like viruses.";
RL   Virology 208:621-633(1995).
CC   -!- FUNCTION: [Polyprotein P1234]: Inactive precursor of the viral
CC       replicase, which is activated by cleavages carried out by the viral
CC       protease nsP2. {ECO:0000250|UniProtKB:Q8JUX6}.
CC   -!- FUNCTION: [Polyprotein P123]: The early replication complex formed by
CC       the polyprotein P123 and nsP4 synthesizes minus-strand RNAs (By
CC       similarity). As soon P123 is cleaved into mature proteins, the plus-
CC       strand RNAs synthesis begins (By similarity).
CC       {ECO:0000250|UniProtKB:P03317}.
CC   -!- FUNCTION: [Polyprotein P123']: The early replication complex formed by
CC       the polyprotein P123' and nsP4 synthesizes minus-strand RNAs
CC       (Probable). Polyprotein P123' is a short-lived polyprotein that
CC       accumulates during early stage of infection (Probable). As soon P123'
CC       is cleaved into mature proteins, the plus-strand RNAs synthesis begins
CC       (Probable). {ECO:0000305}.
CC   -!- FUNCTION: [mRNA-capping enzyme nsP1]: Cytoplasmic capping enzyme that
CC       catalyzes two virus-specific reactions: methyltransferase and nsP1
CC       guanylyltransferase (By similarity). mRNA-capping is necessary since
CC       all viral RNAs are synthesized in the cytoplasm, and host capping
CC       enzymes are restricted to the nucleus (Probable). The enzymatic
CC       reaction involves a covalent link between 7-methyl-GMP and nsP1,
CC       whereas eukaryotic capping enzymes form a covalent complex only with
CC       GMP (By similarity). nsP1 capping consists in the following reactions:
CC       GTP is first methylated into 7-methyl-GMP and then is covalently linked
CC       to nsP1 to form the m7GMp-nsP1 complex from which 7-methyl-GMP complex
CC       is transferred to the mRNA to create the cap structure (By similarity).
CC       NsP1 is needed for the initiation of the minus-strand RNAs synthesis
CC       (By similarity). Probably serves as a membrane anchor for the
CC       replication complex composed of nsP1-nsP4 (By similarity).
CC       Palmitoylated nsP1 is remodeling host cell cytoskeleton, and induces
CC       filopodium-like structure formation at the surface of the host cell (By
CC       similarity). {ECO:0000250|UniProtKB:P03317,
CC       ECO:0000250|UniProtKB:P08411, ECO:0000250|UniProtKB:Q8JUX6,
CC       ECO:0000305}.
CC   -!- FUNCTION: [Protease nsP2]: Multifunctional protein whose N-terminus is
CC       part of the RNA polymerase complex and displays NTPase, RNA
CC       triphosphatase and helicase activities (By similarity). NTPase and RNA
CC       triphosphatase are involved in viral RNA capping and helicase keeps a
CC       check on the dsRNA replication intermediates (By similarity). The C-
CC       terminus harbors a protease that specifically cleaves the polyproteins
CC       and releases the mature proteins (By similarity). Required for the
CC       shutoff of minus-strand RNAs synthesis (By similarity). Specifically
CC       inhibits the host IFN response by promoting the nuclear export of host
CC       STAT1 (By similarity). Also inhibits host transcription by inducing
CC       rapid proteasome-dependent degradation of POLR2A, a catalytic subunit
CC       of the RNAPII complex (By similarity). The resulting inhibition of
CC       cellular protein synthesis serves to ensure maximal viral gene
CC       expression and to evade host immune response (By similarity).
CC       {ECO:0000250|UniProtKB:P03317, ECO:0000250|UniProtKB:P08411,
CC       ECO:0000250|UniProtKB:Q8JUX6}.
CC   -!- FUNCTION: [Non-structural protein 3']: Seems to be essential for minus-
CC       strand RNAs and subgenomic 26S mRNAs synthesis (By similarity).
CC       Displays mono-ADP-ribosylhydrolase activity (Probable). ADP-
CC       ribosylation is a post-translational modification that controls various
CC       processes of the host cell and the virus probably needs to revert it
CC       for optimal viral replication (Probable). Binds proteins of FXR family
CC       and sequesters them into the viral RNA replication complexes thereby
CC       inhibiting the formation of host stress granules on viral mRNAs
CC       (Probable). The nsp3'-FXR complexes bind viral RNAs and probably
CC       orchestrate the assembly of viral replication complexes, thanks to the
CC       ability of FXR family members to self-assemble and bind DNA (Probable).
CC       {ECO:0000250|UniProtKB:P03317, ECO:0000305}.
CC   -!- FUNCTION: [Non-structural protein 3]: Seems to be essential for minus-
CC       strand RNAs and subgenomic 26S mRNAs synthesis (By similarity).
CC       Displays mono-ADP-ribosylhydrolase activity (By similarity). ADP-
CC       ribosylation is a post-translantional modification that controls
CC       various processes of the host cell and the virus probably needs to
CC       revert it for optimal viral replication (By similarity). Binds proteins
CC       of G3BP family and sequesters them into the viral RNA replication
CC       complexes thereby inhibiting the formation of host stress granules on
CC       viral mRNAs (By similarity). The nsp3-G3BP complexes bind viral RNAs
CC       and probably orchestrate the assembly of viral replication complexes,
CC       thanks to the ability of G3BP family members to self-assemble and bind
CC       DNA (By similarity). {ECO:0000250|UniProtKB:P03317,
CC       ECO:0000250|UniProtKB:Q8JUX6}.
CC   -!- FUNCTION: [RNA-directed RNA polymerase nsP4]: RNA dependent RNA
CC       polymerase (By similarity). Replicates genomic and antigenomic RNA by
CC       recognizing replications specific signals. The early replication
CC       complex formed by the polyprotein P123 and nsP4 synthesizes minus-
CC       strand RNAs (By similarity). The late replication complex composed of
CC       fully processed nsP1-nsP4 is responsible for the production of genomic
CC       and subgenomic plus-strand RNAs (By similarity). The core catalytic
CC       domain of nsP4 also possesses terminal adenylyltransferase (TATase)
CC       activity that is probably involved in maintenance and repair of the
CC       poly(A) tail, an element required for replication of the viral genome
CC       (By similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=GTP + S-adenosyl-L-methionine = N(7)-methyl-GTP + S-adenosyl-
CC         L-homocysteine; Xref=Rhea:RHEA:46948, ChEBI:CHEBI:37565,
CC         ChEBI:CHEBI:57856, ChEBI:CHEBI:59789, ChEBI:CHEBI:87133;
CC         Evidence={ECO:0000250|UniProtKB:P27282};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=[nsP1 protein]-L-histidine + N(7)-methyl-GTP = [nsP1 protein]-
CC         N(tele)-(N(7)-methylguanosine 5'-phospho)-L-histidine + diphosphate;
CC         Xref=Rhea:RHEA:54792, Rhea:RHEA-COMP:13994, Rhea:RHEA-COMP:13995,
CC         ChEBI:CHEBI:29979, ChEBI:CHEBI:33019, ChEBI:CHEBI:87133,
CC         ChEBI:CHEBI:138334; Evidence={ECO:0000250|UniProtKB:P03317};
CC       PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:54793;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=[nsP1 protein]-N(tele)-(N(7)-methylguanosine 5'-phospho)-L-
CC         histidine + a 5'-end diphospho-(purine-ribonucleoside) in mRNA + H(+)
CC         = [nsP1 protein]-L-histidine + a 5'-end (N(7)-methyl 5'-
CC         triphosphoguanosine)-(purine-ribonucleoside) in mRNA;
CC         Xref=Rhea:RHEA:54800, Rhea:RHEA-COMP:12925, Rhea:RHEA-COMP:13929,
CC         Rhea:RHEA-COMP:13994, Rhea:RHEA-COMP:13995, ChEBI:CHEBI:15378,
CC         ChEBI:CHEBI:29979, ChEBI:CHEBI:133968, ChEBI:CHEBI:138276,
CC         ChEBI:CHEBI:138334; Evidence={ECO:0000250|UniProtKB:P27282};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=a 5'-end triphospho-(purine-ribonucleoside) in mRNA + H2O = a
CC         5'-end diphospho-(purine-ribonucleoside) in mRNA + H(+) + phosphate;
CC         Xref=Rhea:RHEA:11008, Rhea:RHEA-COMP:13929, Rhea:RHEA-COMP:13942,
CC         ChEBI:CHEBI:15377, ChEBI:CHEBI:15378, ChEBI:CHEBI:43474,
CC         ChEBI:CHEBI:138276, ChEBI:CHEBI:138288; EC=3.1.3.33;
CC         Evidence={ECO:0000250|UniProtKB:P08411};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-
CC         diphosphate + H(+) + phosphate; Xref=Rhea:RHEA:23680,
CC         ChEBI:CHEBI:15377, ChEBI:CHEBI:15378, ChEBI:CHEBI:43474,
CC         ChEBI:CHEBI:57930, ChEBI:CHEBI:61557; EC=3.6.1.15;
CC         Evidence={ECO:0000250|UniProtKB:Q8JUX6};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=ATP + H2O = ADP + H(+) + phosphate; Xref=Rhea:RHEA:13065,
CC         ChEBI:CHEBI:15377, ChEBI:CHEBI:15378, ChEBI:CHEBI:30616,
CC         ChEBI:CHEBI:43474, ChEBI:CHEBI:456216; EC=3.6.4.13;
CC         Evidence={ECO:0000250|UniProtKB:Q8JUX6};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=a ribonucleoside 5'-triphosphate + RNA(n) = diphosphate +
CC         RNA(n+1); Xref=Rhea:RHEA:21248, Rhea:RHEA-COMP:14527, Rhea:RHEA-
CC         COMP:17342, ChEBI:CHEBI:33019, ChEBI:CHEBI:61557, ChEBI:CHEBI:140395;
CC         EC=2.7.7.48; Evidence={ECO:0000255|PROSITE-ProRule:PRU00539};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=ATP + RNA(n) = diphosphate + RNA(n)-3'-adenine ribonucleotide;
CC         Xref=Rhea:RHEA:11332, Rhea:RHEA-COMP:14527, Rhea:RHEA-COMP:17347,
CC         ChEBI:CHEBI:30616, ChEBI:CHEBI:33019, ChEBI:CHEBI:140395,
CC         ChEBI:CHEBI:173115; EC=2.7.7.19;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=4-O-(ADP-D-ribosyl)-L-aspartyl-[protein] + H2O = ADP-D-ribose
CC         + H(+) + L-aspartyl-[protein]; Xref=Rhea:RHEA:54428, Rhea:RHEA-
CC         COMP:9867, Rhea:RHEA-COMP:13832, ChEBI:CHEBI:15377,
CC         ChEBI:CHEBI:15378, ChEBI:CHEBI:29961, ChEBI:CHEBI:57967,
CC         ChEBI:CHEBI:138102; Evidence={ECO:0000250|UniProtKB:P03317};
CC       PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:54429;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=5-O-(ADP-D-ribosyl)-L-glutamyl-[protein] + H2O = ADP-D-ribose
CC         + H(+) + L-glutamyl-[protein]; Xref=Rhea:RHEA:58248, Rhea:RHEA-
CC         COMP:10208, Rhea:RHEA-COMP:15089, ChEBI:CHEBI:15377,
CC         ChEBI:CHEBI:15378, ChEBI:CHEBI:29973, ChEBI:CHEBI:57967,
CC         ChEBI:CHEBI:142540; Evidence={ECO:0000250|UniProtKB:P03317};
CC       PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:58249;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=ADP-beta-D-ribose 1''-phosphate + H2O = ADP-D-ribose +
CC         phosphate; Xref=Rhea:RHEA:25029, ChEBI:CHEBI:15377,
CC         ChEBI:CHEBI:43474, ChEBI:CHEBI:57967, ChEBI:CHEBI:58753; EC=3.1.3.84;
CC         Evidence={ECO:0000250|UniProtKB:Q8JUX6};
CC       PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:25030;
CC         Evidence={ECO:0000250|UniProtKB:Q8JUX6};
CC   -!- COFACTOR:
CC       Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC       Name=Mn(2+); Xref=ChEBI:CHEBI:29035;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC       Note=For nsP4 adenylyltransferase activity; Mn(2+) supports catalysis
CC       at 60% of the levels observed with Mg(2+).
CC       {ECO:0000250|UniProtKB:P03317};
CC   -!- COFACTOR:
CC       Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC       Note=For nsP4 RNA-directed RNA polymerase activity.
CC       {ECO:0000250|UniProtKB:P03317};
CC   -!- COFACTOR:
CC       Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
CC         Evidence={ECO:0000250|UniProtKB:P27282};
CC       Note=For nsP1 guanylylation. {ECO:0000250|UniProtKB:P27282};
CC   -!- COFACTOR:
CC       Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
CC       Note=For nsP2 RNA triphosphatase activity.
CC       {ECO:0000250|UniProtKB:Q8JUX6};
CC   -!- COFACTOR:
CC       Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
CC       Note=For nsP2 NTPase activity. {ECO:0000250|UniProtKB:Q8JUX6};
CC   -!- SUBUNIT: [mRNA-capping enzyme nsP1]: Interacts with non-structural
CC       protein 3 (By similarity). Interacts with RNA-directed RNA polymerase
CC       nsP4 (By similarity). Interacts with protease nsP2 (By similarity).
CC       interacts with itself (By similarity). {ECO:0000250|UniProtKB:P03317,
CC       ECO:0000250|UniProtKB:P27282}.
CC   -!- SUBUNIT: [Non-structural protein 3]: Interacts with mRNA-capping enzyme
CC       nsP1 (By similarity). Interacts with host DDX1 (By similarity).
CC       Interacts with host DDX3 (By similarity). Interacts (via C-terminus)
CC       with host G3BP1; this interaction inhibits the formation of host stress
CC       granules on viral mRNAs and the nsp3-G3BP1 complexes bind viral RNAs
CC       and probably orchestrate the assembly of viral replication complexes
CC       (By similarity). Interacts (via C-terminus) with host G3BP2; this
CC       interaction inhibits the formation of host stress granules on viral
CC       mRNAs and the nsp3-G3BP2 complexes bind viral RNAs and probably
CC       orchestrate the assembly of viral replication complexes (By
CC       similarity). {ECO:0000250|UniProtKB:P03317,
CC       ECO:0000250|UniProtKB:P27282}.
CC   -!- SUBUNIT: [RNA-directed RNA polymerase nsP4]: Interacts with mRNA-
CC       capping enzyme nsP1 (By similarity). Interacts with protease nsP2 (By
CC       similarity). interacts with itself (By similarity).
CC       {ECO:0000250|UniProtKB:P03317, ECO:0000250|UniProtKB:P27282}.
CC   -!- SUBUNIT: [Protease nsP2]: Interacts with RNA-directed RNA polymerase
CC       nsP4 (By similarity). Interacts with mRNA-capping enzyme nsP1 (By
CC       similarity). Interacts with KPNA1/karyopherin-alpha1; this interaction
CC       probably allows the active transport of protease nsP2 into the host
CC       nucleus (By similarity). {ECO:0000250|UniProtKB:P03317,
CC       ECO:0000250|UniProtKB:P27282}.
CC   -!- SUBCELLULAR LOCATION: [Polyprotein P1234]: Host cytoplasmic vesicle
CC       membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305}.
CC       Note=Part of cytoplasmic vesicles, which are probably formed at the
CC       plasma membrane and internalized leading to late endosomal/lysosomal
CC       spherules containing the replication complex. {ECO:0000305}.
CC   -!- SUBCELLULAR LOCATION: [Polyprotein P123']: Host cytoplasmic vesicle
CC       membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305}.
CC       Note=Part of cytoplasmic vesicles, which are probably formed at the
CC       plasma membrane and internalized leading to late endosomal/lysosomal
CC       spherules containing the replication complex. {ECO:0000305}.
CC   -!- SUBCELLULAR LOCATION: [Polyprotein P123]: Host cytoplasmic vesicle
CC       membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305}.
CC       Note=Part of cytoplasmic vesicles, which are probably formed at the
CC       plasma membrane and internalized leading to late endosomal/lysosomal
CC       spherules containing the replication complex. {ECO:0000305}.
CC   -!- SUBCELLULAR LOCATION: [mRNA-capping enzyme nsP1]: Host cytoplasmic
CC       vesicle membrane {ECO:0000250|UniProtKB:P08411}; Lipid-anchor
CC       {ECO:0000250|UniProtKB:P08411}. Host cell membrane
CC       {ECO:0000250|UniProtKB:P08411}; Lipid-anchor
CC       {ECO:0000250|UniProtKB:P08411}; Cytoplasmic side
CC       {ECO:0000250|UniProtKB:P08411}. Host cell projection, host filopodium
CC       {ECO:0000250|UniProtKB:P08411}. Note=In the late phase of infection,
CC       the polyprotein is quickly cleaved before localization to cellular
CC       membranes. Then a fraction of nsP1 localizes to the inner surface of
CC       the plasma membrane and its filopodial extensions. Only the
CC       palmitoylated nsP1 localizes to the host filopodia (By similarity).
CC       NsP1 is also part of cytoplasmic vesicles, which are probably formed at
CC       the plasma membrane and internalized leading to late
CC       endosomal/lysosomal spherules containing the replication complex (By
CC       similarity). {ECO:0000250|UniProtKB:P08411}.
CC   -!- SUBCELLULAR LOCATION: [Protease nsP2]: Host cytoplasmic vesicle
CC       membrane {ECO:0000250|UniProtKB:P08411}; Peripheral membrane protein
CC       {ECO:0000250|UniProtKB:P08411}. Host nucleus
CC       {ECO:0000250|UniProtKB:P27282}. Host cytoplasm
CC       {ECO:0000250|UniProtKB:P27282}. Note=In the late phase of infection,
CC       the polyprotein is quickly cleaved before localization to cellular
CC       membranes. Then approximately half of nsP2 is found in the nucleus (By
CC       similarity). Shuttles between cytoplasm and nucleus (By similarity).
CC       NsP2 is also part of cytoplasmic vesicles, which are probably formed at
CC       the plasma membrane and internalized leading to late
CC       endosomal/lysosomal spherules containing the replication complex (By
CC       similarity). {ECO:0000250|UniProtKB:P08411,
CC       ECO:0000250|UniProtKB:P27282}.
CC   -!- SUBCELLULAR LOCATION: [Non-structural protein 3]: Host cytoplasmic
CC       vesicle membrane {ECO:0000250|UniProtKB:P03317}; Peripheral membrane
CC       protein {ECO:0000305}. Note=In the late phase of infection, the
CC       polyprotein is quickly cleaved before localization to cellular
CC       membranes. Then nsP3 and nsP3' form aggregates in cytoplasm (By
CC       similarity). NsP3 is also part of cytoplasmic vesicles, which are
CC       probably formed at the plasma membrane and internalized leading to late
CC       endosomal/lysosomal spherules containing the replication complex (By
CC       similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- SUBCELLULAR LOCATION: [Non-structural protein 3']: Host cytoplasmic
CC       vesicle membrane {ECO:0000250|UniProtKB:P03317}; Peripheral membrane
CC       protein {ECO:0000305}. Note=In the late phase of infection, the
CC       polyprotein is quickly cleaved before localization to cellular
CC       membranes. Then nsP3 and nsP3' form aggregates in cytoplasm (By
CC       similarity). NsP3' is also part of cytoplasmic vesicles, which are
CC       probably formed at the plasma membrane and internalized leading to late
CC       endosomal/lysosomal spherules containing the replication complex (By
CC       similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- SUBCELLULAR LOCATION: [RNA-directed RNA polymerase nsP4]: Host
CC       cytoplasmic vesicle membrane; Peripheral membrane protein
CC       {ECO:0000250|UniProtKB:P03317}. Note=NsP4 is part of cytoplasmic
CC       vesicles, which are probably formed at the plasma membrane and
CC       internalized leading to late endosomal/lysosomal spherules containing
CC       the replication complex. {ECO:0000250|UniProtKB:P08411}.
CC   -!- DOMAIN: [Protease nsP2]: The N-terminus exhibits NTPase and RNA
CC       triphosphatase activities and is proposed to have helicase activity,
CC       whereas the C-terminus possesses protease activity (By similarity).
CC       Contains a nuclear localization signal and a nuclear export signal,
CC       these two motifs are probably involved in the shuttling between the
CC       cytoplasm and the nucleus of nsP2 (By similarity). The C-terminus is
CC       required for promoting the export of host STAT1 (By similarity).
CC       {ECO:0000250|UniProtKB:P27282, ECO:0000250|UniProtKB:Q8JUX6}.
CC   -!- DOMAIN: [Non-structural protein 3]: In the N-terminus, the macro domain
CC       displays a mono-ADP-ribosylhydrolase activity (By similarity). The
CC       central part has a zinc-binding function (By similarity). The C-
CC       terminus contains two FGDF motifs necessary and sufficient for
CC       formation of the nsP3/G3BP1 complex (By similarity).
CC       {ECO:0000250|UniProtKB:P03317, ECO:0000250|UniProtKB:P08411}.
CC   -!- DOMAIN: [Non-structural protein 3']: In the N-terminus, the macro
CC       domain displays a mono-ADP-ribosylhydrolase activity (By similarity).
CC       The central part has a zinc-binding function (By similarity). The C-
CC       terminus contains two FGDF motifs necessary and sufficient for
CC       formation of the nsP3/G3BP1 complex (By similarity).
CC       {ECO:0000250|UniProtKB:P03317, ECO:0000250|UniProtKB:P08411}.
CC   -!- PTM: [Polyprotein P1234]: Specific enzymatic cleavages in vivo yield
CC       mature proteins (By similarity). The processing of the polyprotein is
CC       temporally regulated (By similarity). In early stages (1.7 hpi), P1234
CC       is first cleaved in trans through its nsP2 protease activity, releasing
CC       P123' and nsP4, which associate to form the early replication complex
CC       (By similarity). At the same time, P1234 is also cut at the nsP1/nsP2
CC       site early in infection but with lower efficiency (By similarity).
CC       After replication of the viral minus-strand RNAs (4 hpi), the
CC       polyproteins are cut at the nsP1/nsP2 and nsP2/nsP3 sites very
CC       efficiently, preventing accumulation of P123' and P1234 and allowing
CC       the formation of the late replication complex (By similarity).
CC       NsP3'/nsP4 site is not cleaved anymore and P34 is produced rather than
CC       nsP4 (By similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- PTM: [Polyprotein P123]: Specific enzymatic cleavages in vivo yield
CC       mature proteins (By similarity). The processing of the polyprotein is
CC       temporally regulated (By similarity). In early stages (1.7 hpi), P123
CC       is cleaved at the nsP1/nsP2 site with low efficiency (By similarity).
CC       After replication of the viral minus-strand RNAs (4 hpi), the
CC       polyproteins are cut at the nsP1/nsP2 and nsP2/nsP3 sites very
CC       efficiently, preventing accumulation of P123 and allowing the formation
CC       of the late replication complex (By similarity).
CC       {ECO:0000250|UniProtKB:P03317}.
CC   -!- PTM: [Polyprotein P123']: Specific enzymatic cleavages in vivo yield
CC       mature proteins (By similarity). The processing of the polyprotein is
CC       temporally regulated (By similarity). In early stages (1.7 hpi), P123'
CC       is cleaved at the nsP1/nsP2 site with low efficiency (By similarity).
CC       After replication of the viral minus-strand RNAs (4 hpi), the
CC       polyproteins are cut at the nsP1/nsP2 and nsP2/nsP3 sites very
CC       efficiently, preventing accumulation of P123' and allowing the
CC       formation of the late replication complex (By similarity).
CC       {ECO:0000250|UniProtKB:P03317}.
CC   -!- PTM: [mRNA-capping enzyme nsP1]: Palmitoylated by host
CC       palmitoyltransferases ZDHHC2 and ZDHHC19.
CC       {ECO:0000250|UniProtKB:Q8JUX6}.
CC   -!- PTM: [Non-structural protein 3]: Phosphorylated by host on serines and
CC       threonines. {ECO:0000250|UniProtKB:P08411}.
CC   -!- PTM: [Non-structural protein 3']: Phosphorylated by host on serines and
CC       threonines. {ECO:0000250|UniProtKB:P08411}.
CC   -!- PTM: [RNA-directed RNA polymerase nsP4]: Ubiquitinated; targets the
CC       protein for rapid degradation via the ubiquitin system (By similarity).
CC       Nsp4 is present in extremely low quantities due to low frequency of
CC       translation through the amber stop-codon and the degradation by the
CC       ubiquitin pathway (By similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- MISCELLANEOUS: Viral replication produces dsRNA in the late phase of
CC       infection, resulting in a strong activation of host EIF2AK2/PKR,
CC       leading to almost complete phosphorylation of EIF2A (By similarity).
CC       This inactivates completely cellular translation initiation, resulting
CC       shutoff of host proteins synthesis (By similarity). However,
CC       phosphorylation of EIF2A is probably not the only mechanism responsible
CC       for the host translation shutoff (By similarity). The viral translation
CC       can still occur normally because it relies on a hairpin structure in
CC       the coding region of sgRNA and is EIF2A-, EIF2D-, EIF4G- EIF4A-
CC       independent (By similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- MISCELLANEOUS: The genome codes for P123, but readthrough of a
CC       terminator codon UGA occurs between the codons for Tyr-1882 and Leu-
CC       1884 giving rise to P1234 (Probable). P1234 is cleaved quickly by nsP2
CC       into P123' and nsP4 (By similarity). Further processing of p123' gives
CC       nsP1, nsP2 and nsP3' which is 6 amino acids longer than nsP3 since the
CC       cleavage site is after the readthrough (By similarity). This unusual
CC       molecular mechanism ensures that few nsP4 are produced compared to
CC       other non-structural proteins (By similarity). Mutant viruses with no
CC       alternative termination site grow significantly slower than wild-type
CC       virus (By similarity). The opal termination codon is frequently mutated
CC       to a sense codon on passage in cell culture (By similarity). The
CC       presence of the opal codon may be a requirement for viral maintenance
CC       in both vertebrate and invertebrate hosts and a selective advantage may
CC       be conferred in cell culture for the sense codon (By similarity).
CC       {ECO:0000250|UniProtKB:O90368, ECO:0000250|UniProtKB:P03317,
CC       ECO:0000305}.
CC   ---------------------------------------------------------------------------
CC   Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC   Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC   ---------------------------------------------------------------------------
DR   EMBL; AF126284; AAD13622.1; -; Genomic_RNA.
DR   RefSeq; NP_632023.2; NC_003900.1.
DR   MEROPS; C09.001; -.
DR   PRIDE; Q86924; -.
DR   GeneID; 944525; -.
DR   KEGG; vg:944525; -.
DR   Proteomes; UP000007442; Genome.
DR   GO; GO:0044162; C:host cell cytoplasmic vesicle membrane; IEA:UniProtKB-SubCell.
DR   GO; GO:0044176; C:host cell filopodium; IEA:UniProtKB-SubCell.
DR   GO; GO:0042025; C:host cell nucleus; IEA:UniProtKB-SubCell.
DR   GO; GO:0020002; C:host cell plasma membrane; IEA:UniProtKB-SubCell.
DR   GO; GO:0016020; C:membrane; IEA:UniProtKB-KW.
DR   GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR   GO; GO:0016887; F:ATP hydrolysis activity; IEA:RHEA.
DR   GO; GO:0008234; F:cysteine-type peptidase activity; IEA:UniProtKB-KW.
DR   GO; GO:0005525; F:GTP binding; IEA:UniProtKB-KW.
DR   GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
DR   GO; GO:0008174; F:mRNA methyltransferase activity; IEA:InterPro.
DR   GO; GO:0004651; F:polynucleotide 5'-phosphatase activity; IEA:UniProtKB-EC.
DR   GO; GO:0004652; F:polynucleotide adenylyltransferase activity; IEA:UniProtKB-EC.
DR   GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
DR   GO; GO:0003724; F:RNA helicase activity; IEA:UniProtKB-EC.
DR   GO; GO:0003968; F:RNA-directed 5'-3' RNA polymerase activity; IEA:UniProtKB-KW.
DR   GO; GO:0006370; P:7-methylguanosine mRNA capping; IEA:UniProtKB-KW.
DR   GO; GO:0006508; P:proteolysis; IEA:UniProtKB-KW.
DR   GO; GO:0039523; P:suppression by virus of host mRNA transcription via inhibition of RNA polymerase II activity; IEA:UniProtKB-KW.
DR   GO; GO:0006351; P:transcription, DNA-templated; IEA:InterPro.
DR   GO; GO:0039694; P:viral RNA genome replication; IEA:InterPro.
DR   CDD; cd21557; Macro_X_Nsp3-like; 1.
DR   Gene3D; 3.40.220.10; -; 1.
DR   Gene3D; 3.40.50.150; -; 1.
DR   Gene3D; 3.40.50.300; -; 2.
DR   Gene3D; 3.90.70.110; -; 1.
DR   InterPro; IPR027351; (+)RNA_virus_helicase_core_dom.
DR   InterPro; IPR002588; Alphavirus-like_MT_dom.
DR   InterPro; IPR002620; Alphavirus_nsp2pro.
DR   InterPro; IPR044936; Alphavirus_nsp2pro_sf.
DR   InterPro; IPR043502; DNA/RNA_pol_sf.
DR   InterPro; IPR002589; Macro_dom.
DR   InterPro; IPR043472; Macro_dom-like.
DR   InterPro; IPR044371; Macro_X_NSP3-like.
DR   InterPro; IPR027417; P-loop_NTPase.
DR   InterPro; IPR007094; RNA-dir_pol_PSvirus.
DR   InterPro; IPR029063; SAM-dependent_MTases_sf.
DR   InterPro; IPR001788; Tymovirus_RNA-dep_RNA_pol.
DR   Pfam; PF01661; Macro; 1.
DR   Pfam; PF01707; Peptidase_C9; 1.
DR   Pfam; PF00978; RdRP_2; 1.
DR   Pfam; PF01443; Viral_helicase1; 1.
DR   Pfam; PF01660; Vmethyltransf; 1.
DR   SMART; SM00506; A1pp; 1.
DR   SUPFAM; SSF52540; SSF52540; 1.
DR   SUPFAM; SSF52949; SSF52949; 1.
DR   SUPFAM; SSF53335; SSF53335; 1.
DR   SUPFAM; SSF56672; SSF56672; 1.
DR   PROSITE; PS51743; ALPHAVIRUS_MT; 1.
DR   PROSITE; PS51154; MACRO; 1.
DR   PROSITE; PS51520; NSP2PRO; 1.
DR   PROSITE; PS51657; PSRV_HELICASE; 1.
DR   PROSITE; PS50507; RDRP_SSRNA_POS; 1.
PE   3: Inferred from homology;
KW   ATP-binding; Eukaryotic host gene expression shutoff by virus;
KW   Eukaryotic host transcription shutoff by virus; GTP-binding; Helicase;
KW   Host cell membrane; Host cell projection; Host cytoplasm;
KW   Host cytoplasmic vesicle; Host gene expression shutoff by virus;
KW   Host membrane; Host nucleus; Host-virus interaction; Hydrolase;
KW   Inhibition of host RNA polymerase II by virus; Lipoprotein; Membrane;
KW   Metal-binding; Methyltransferase; mRNA capping; mRNA processing;
KW   Multifunctional enzyme; Nucleotide-binding; Nucleotidyltransferase;
KW   Palmitate; Phosphoprotein; Protease; RNA suppression of termination;
KW   RNA-binding; RNA-directed RNA polymerase; S-adenosyl-L-methionine;
KW   Thiol protease; Transferase; Ubl conjugation; Viral RNA replication; Zinc.
FT   CHAIN           1..2499
FT                   /note="Polyprotein P1234"
FT                   /id="PRO_0000308382"
FT   CHAIN           1..1889
FT                   /note="Polyprotein P123'"
FT                   /id="PRO_0000238699"
FT   CHAIN           1..1882
FT                   /note="Polyprotein P123"
FT                   /id="PRO_0000238700"
FT   CHAIN           1..539
FT                   /note="mRNA-capping enzyme nsP1"
FT                   /id="PRO_0000238701"
FT   CHAIN           540..1345
FT                   /note="Protease nsP2"
FT                   /id="PRO_0000238702"
FT   CHAIN           1346..1889
FT                   /note="Non-structural protein 3'"
FT                   /id="PRO_0000238703"
FT   CHAIN           1346..1882
FT                   /note="Non-structural protein 3"
FT                   /id="PRO_0000238704"
FT   CHAIN           1890..2499
FT                   /note="RNA-directed RNA polymerase nsP4"
FT                   /id="PRO_0000238705"
FT   DOMAIN          30..260
FT                   /note="Alphavirus-like MT"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU01079"
FT   DOMAIN          694..849
FT                   /note="(+)RNA virus helicase ATP-binding"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00990"
FT   DOMAIN          850..998
FT                   /note="(+)RNA virus helicase C-terminal"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00990"
FT   DOMAIN          1011..1339
FT                   /note="Peptidase C9"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00853"
FT   DOMAIN          1346..1505
FT                   /note="Macro"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00490"
FT   DOMAIN          2253..2368
FT                   /note="RdRp catalytic"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00539"
FT   REGION          245..264
FT                   /note="NsP1 membrane-binding"
FT                   /evidence="ECO:0000250|UniProtKB:P08411"
FT   REGION          1012..1031
FT                   /note="Nucleolus localization signal"
FT                   /evidence="ECO:0000250|UniProtKB:P08411"
FT   REGION          1674..1695
FT                   /note="Disordered"
FT                   /evidence="ECO:0000256|SAM:MobiDB-lite"
FT   MOTIF           1065..1074
FT                   /note="Nuclear export signal"
FT                   /evidence="ECO:0000250|UniProtKB:P27282"
FT   MOTIF           1194..1198
FT                   /note="Nuclear localization signal"
FT                   /evidence="ECO:0000250|UniProtKB:P08411"
FT   MOTIF           1845..1848
FT                   /note="FGDF; binding to host G3BP1"
FT                   /evidence="ECO:0000250|UniProtKB:P08411"
FT   MOTIF           1865..1868
FT                   /note="FGDF; binding to host G3BP1"
FT                   /evidence="ECO:0000250|UniProtKB:P08411"
FT   ACT_SITE        1020
FT                   /note="For cysteine protease nsP2 activity"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00853"
FT   ACT_SITE        1097
FT                   /note="For cysteine protease nsP2 activity"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00853"
FT   BINDING         725..732
FT                   /ligand="a ribonucleoside 5'-triphosphate"
FT                   /ligand_id="ChEBI:CHEBI:61557"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00990"
FT   BINDING         1369
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
FT   BINDING         1377
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
FT   BINDING         1457
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:P36328"
FT   BINDING         1458
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:P36328"
FT   BINDING         1459
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
FT   BINDING         1608
FT                   /ligand="Zn(2+)"
FT                   /ligand_id="ChEBI:CHEBI:29105"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   BINDING         1610
FT                   /ligand="Zn(2+)"
FT                   /ligand_id="ChEBI:CHEBI:29105"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   BINDING         1633
FT                   /ligand="Zn(2+)"
FT                   /ligand_id="ChEBI:CHEBI:29105"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   BINDING         1651
FT                   /ligand="Zn(2+)"
FT                   /ligand_id="ChEBI:CHEBI:29105"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   SITE            39
FT                   /note="Involved in the phosphoramide link with 7-methyl-
FT                   GMP"
FT                   /evidence="ECO:0000250|UniProtKB:P27282"
FT   SITE            539..540
FT                   /note="Cleavage; by protease nsP2"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   SITE            1345..1346
FT                   /note="Cleavage; by protease nsP2"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   SITE            1889..1890
FT                   /note="Cleavage; by protease nsP2"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
FT   LIPID           420
FT                   /note="S-palmitoyl cysteine; by host"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
SQ   SEQUENCE   2499 AA;  280012 MW;  5DC641AF469FA0C8 CRC64;
     MEKPTVHVDV DPQSPFVLQL QKSFPQFEIV AQQVTPNDHA NARAFSHLAS KLIEHEIPTS
     VTILDIGSAP ARRMYSEHKY HCVCPMRSPE DPDRLMNYAS RLADKAGEIT NKRLHDKLAD
     LKSVLESPDA ETGTICFHND VICRTTAEVS VMQNVYINAP STIYHQALKG VRKLYWIGFD
     TTQFMFSSMA GSYPSYNTNW ADERVLEARN IGLCSTKLRE GTMGKLSTFR KKALKPGTNV
     YFSVGSTLYP ENRADLQSWH LPSVFHLKGK QSFTCRCDTA VNCEGYVVKK ITISPGITGR
     VNRYTVTNNS EGFLLCKITD TVKGERVSFP VCTYIPPSIC DQMTGILATD IQPEDAQKLL
     VGLNQRIVVN GKTNRNTNTM QNYLLPAVAT GLSKWAKERK ADCSDEKPLN VRERKLAFGC
     LWAFKTKKIH SFYRPPGTQT IVKVAAEFSA FPMSSVWTTS LPMSLRQKVK LLLVKKTNKP
     VVTITDTAVK NAQEAYNEAV ETAEAEEKAK ALPPLKPTAP PVAEDVKCEV TDLVDDAGAA
     LVETPRGKIK IIPQEGDVRI GSYTVISPAA VLRNQQLEPI HELAEQVKII THGGRTGRYS
     VEPYDAKVLL PTGCPMSWQH FAALSESATL VYNEREFLNR KLHHIATKGA AKNTEEEQYK
     VCKAKDTDHE YVYDVDARKC VKREHAQGLV LVGELTNPPY HELAYEGLRT RPAAPYHIET
     LGVIGTPGSG KSAIIKSTVT LKDLVTSGKK ENCKEIENDV QKMRGMTIAT RTVDSVLLNG
     WKKAVDVLYV DEAFACHAGT LMALIAIVKP RRKVVLCGDP KQWPFFNLMQ LKVNFNNPER
     DLCTSTHYKY ISRRCTQPVT AIVSTLHYDG KMRTTNPCKR AIEIDVNGST KPKKGDIVLT
     CFRGWVKQGQ IDYPGPGGHD RAASQGLTRR GVYAVRQKVN ENPLYAEKSE HVNVLLTRTE
     DRIVWKTLQG DPWIKYLTNV PKGNFTATLE EWQAEHEDIM KAINSTSTVS DPFASKVNTC
     WAKAIIPILR TAGIELTFEQ WEDLFPQFRN DQPYSVMYAL DVICTKMFGM DLSSGIFSRP
     EIPLTFHPAD VGRVRAHWDN SPGGQKFGYN KAVIPTCKKY PVYLRAGKGD QILPIYGRVS
     VPSARNNLVP LNRNLPHSLT ASLQKKEAAP LHKFLNQLPG HSMLLVSKET CYCVSKRITW
     VAPLGVRGAD HNHDLHFGFP PLSRYDLVVV NMGQPYRFHH YQQCEEHAGL MRTLARSALN
     CLKPGGTLAL KAYGFADSNS EDVVLSLARK FVRASAVRPS CTQFNTEMFF VFRQLDNDRE
     RQFTQHHLNL AVSNIFDNYK DGSGAAPSYR VKRMNIADCT EEAVVNAANA RGKPGDGVCR
     AIFKKWPKSF ENATTEVETA VMKPCHNKVV IHAVGPDFRK YTLEEATKLL QNAYHDVAKI
     VNEKGISSVA IPLLSTGIYA AGADRLDLSL RCLFTALDRT DADVTIYCLD KKWEQRIADA
     IRMREQVTEL KDPDIEIDEG LTRVHPDSCL KDHIGYSTQY GKLYSYFEGT KFHQTAKDIA
     EIRALFPDVQ AANEQICLYT LGEPMESIRE KCPVEDSPAS APPKTIPCLC MYAMTAERIC
     RVRSNSVTNI TVCSSFPLPK YRIKNVQKIQ CTKVVLFNPD VPPYIPARVY INKDEPPVTP
     HTDSPPDTCS SRLSLTPTLS NAESDIVSLT FSEIDSELSS LNEPARHVMI SSFKLRYTAI
     QALPQKLSWM REDRTPRQPP PVPPPRPKRA AKLSRLANQL NELRRHATIS SVQAEVHYNS
     GFTPEAELNE RGSILRKPPP VPPLRPKQTT NLSRLANQLS MPITFGDFAE GELDRLLTPS
     PTPTFGDFSQ EEMDRFFGNR QYXLTGVGGY IFSSDTGPGH LQQKSVIQNS TTEILIERSR
     LEKIHAPVLD LQKEEMLKCR YQMSPTVANK SRYQSRKVEN MKAVTTGRLL DGLKMYVTPD
     VEAECYKYTY PKPMYSASVP DRFVSPEVAV AVCNNFFHEN YPTVASYQIT DEYDAYLDMV
     EGSVSCLDTA TFCPAKLRSF PKTHSYLEPT LRSAVPSAFQ NTLQNVLSAA TKRNCNVTQM
     RELPVLDSAV FNVECFKKYA CNTDYWEEFK EKPIRITTEC VTSYVARLKG PEAAALFAKT
     HQLVPLQEVP MDRFVMDMKR DVKVTPGTKH TEERPKVQVI QAAEPLATAY LCGIHRELVR
     RLTAVLLPNI HTLFDMSAED FDAIIAANFS YVHPVLETDI GSFDKSQDDS LALTALMILE
     DLGVDDRLMD LIECAFGEIT SVHLPTATTF KFGAMMKSGM FLTLFVNTVL NVVIASRVLE
     QRLRDSKCAA FIGDDNIIHG VVSDKIMADR CATWMNMEVK IIDAVIGIKA PYFCGGFILE
     DQVTHTACRV SDPLKRLFKL GKPLPVDDEQ DHDRRRALED ETRAWFRVGI QGELLKAVES
     RYEVQEVQPV LLALATFSRS DKAFKALRGS PRHLYGGPK
 
 
维奥蛋白资源库 - 中文蛋白资源 CopyRight © 2010-2024