位置:首页 > 蛋白库 > POLN_BFV
POLN_BFV
ID   POLN_BFV                Reviewed;        2411 AA.
AC   P87515;
DT   21-MAR-2006, integrated into UniProtKB/Swiss-Prot.
DT   10-APR-2019, sequence version 3.
DT   03-AUG-2022, entry version 134.
DE   RecName: Full=Polyprotein P1234;
DE            Short=P1234;
DE   AltName: Full=Non-structural polyprotein;
DE   Contains:
DE     RecName: Full=Polyprotein P123';
DE              Short=P123';
DE   Contains:
DE     RecName: Full=Polyprotein P123;
DE              Short=P123;
DE   Contains:
DE     RecName: Full=mRNA-capping enzyme nsP1;
DE              EC=2.1.1.- {ECO:0000250|UniProtKB:P27282};
DE              EC=2.7.7.- {ECO:0000250|UniProtKB:P03317};
DE     AltName: Full=Non-structural protein 1;
DE   Contains:
DE     RecName: Full=Protease nsP2;
DE              EC=3.1.3.33 {ECO:0000250|UniProtKB:P08411};
DE              EC=3.4.22.- {ECO:0000250|UniProtKB:Q8JUX6};
DE              EC=3.6.1.15 {ECO:0000250|UniProtKB:Q8JUX6};
DE              EC=3.6.4.13 {ECO:0000250|UniProtKB:Q8JUX6};
DE     AltName: Full=Non-structural protein 2;
DE              Short=nsP2;
DE   Contains:
DE     RecName: Full=Non-structural protein 3';
DE              Short=nsP3';
DE              EC=3.1.3.84 {ECO:0000305};
DE   Contains:
DE     RecName: Full=Non-structural protein 3;
DE              Short=nsP3;
DE              EC=3.1.3.84 {ECO:0000250|UniProtKB:Q8JUX6};
DE   Contains:
DE     RecName: Full=RNA-directed RNA polymerase nsP4;
DE              EC=2.7.7.19 {ECO:0000250|UniProtKB:P03317};
DE              EC=2.7.7.48 {ECO:0000255|PROSITE-ProRule:PRU00539};
DE     AltName: Full=Non-structural protein 4;
DE              Short=nsP4;
OS   Barmah forest virus (BFV).
OC   Viruses; Riboviria; Orthornavirae; Kitrinoviricota; Alsuviricetes;
OC   Martellivirales; Togaviridae; Alphavirus.
OX   NCBI_TaxID=11020;
OH   NCBI_TaxID=59117; Anopheles amictus.
OH   NCBI_TaxID=162997; Culex annulirostris (Common banded mosquito).
OH   NCBI_TaxID=9606; Homo sapiens (Human).
OH   NCBI_TaxID=9312; Macropus.
RN   [1]
RP   NUCLEOTIDE SEQUENCE [GENOMIC RNA].
RX   PubMed=9018152; DOI=10.1006/viro.1996.8343;
RA   Lee E., Stocks C., Lobigs P., Hislop A., Straub J., Marshall I., Weir R.,
RA   Dalgarno L.;
RT   "Nucleotide sequence of the Barmah forest virus genome.";
RL   Virology 227:509-514(1997).
CC   -!- FUNCTION: [Polyprotein P1234]: Inactive precursor of the viral
CC       replicase, which is activated by cleavages carried out by the viral
CC       protease nsP2. {ECO:0000250|UniProtKB:Q8JUX6}.
CC   -!- FUNCTION: [Polyprotein P123]: The early replication complex formed by
CC       the polyprotein P123 and nsP4 synthesizes minus-strand RNAs (By
CC       similarity). As soon P123 is cleaved into mature proteins, the plus-
CC       strand RNAs synthesis begins (By similarity).
CC       {ECO:0000250|UniProtKB:P03317}.
CC   -!- FUNCTION: [Polyprotein P123']: The early replication complex formed by
CC       the polyprotein P123' and nsP4 synthesizes minus-strand RNAs
CC       (Probable). Polyprotein P123' is a short-lived polyprotein that
CC       accumulates during early stage of infection (Probable). As soon P123'
CC       is cleaved into mature proteins, the plus-strand RNAs synthesis begins
CC       (Probable). {ECO:0000305}.
CC   -!- FUNCTION: [mRNA-capping enzyme nsP1]: Cytoplasmic capping enzyme that
CC       catalyzes two virus-specific reactions: methyltransferase and nsP1
CC       guanylyltransferase (By similarity). mRNA-capping is necessary since
CC       all viral RNAs are synthesized in the cytoplasm, and host capping
CC       enzymes are restricted to the nucleus (Probable). The enzymatic
CC       reaction involves a covalent link between 7-methyl-GMP and nsP1,
CC       whereas eukaryotic capping enzymes form a covalent complex only with
CC       GMP (By similarity). nsP1 capping consists in the following reactions:
CC       GTP is first methylated into 7-methyl-GMP and then is covalently linked
CC       to nsP1 to form the m7GMp-nsP1 complex from which 7-methyl-GMP complex
CC       is transferred to the mRNA to create the cap structure (By similarity).
CC       NsP1 is needed for the initiation of the minus-strand RNAs synthesis
CC       (By similarity). Probably serves as a membrane anchor for the
CC       replication complex composed of nsP1-nsP4 (By similarity).
CC       Palmitoylated nsP1 is remodeling host cell cytoskeleton, and induces
CC       filopodium-like structure formation at the surface of the host cell (By
CC       similarity). {ECO:0000250|UniProtKB:P03317,
CC       ECO:0000250|UniProtKB:P08411, ECO:0000250|UniProtKB:Q8JUX6,
CC       ECO:0000305}.
CC   -!- FUNCTION: [Protease nsP2]: Multifunctional protein whose N-terminus is
CC       part of the RNA polymerase complex and displays NTPase, RNA
CC       triphosphatase and helicase activities (By similarity). NTPase and RNA
CC       triphosphatase are involved in viral RNA capping and helicase keeps a
CC       check on the dsRNA replication intermediates (By similarity). The C-
CC       terminus harbors a protease that specifically cleaves the polyproteins
CC       and releases the mature proteins (By similarity). Required for the
CC       shutoff of minus-strand RNAs synthesis (By similarity). Specifically
CC       inhibits the host IFN response by promoting the nuclear export of host
CC       STAT1 (By similarity). Also inhibits host transcription by inducing
CC       rapid proteasome-dependent degradation of POLR2A, a catalytic subunit
CC       of the RNAPII complex (By similarity). The resulting inhibition of
CC       cellular protein synthesis serves to ensure maximal viral gene
CC       expression and to evade host immune response (By similarity).
CC       {ECO:0000250|UniProtKB:P03317, ECO:0000250|UniProtKB:P08411,
CC       ECO:0000250|UniProtKB:Q8JUX6}.
CC   -!- FUNCTION: [Non-structural protein 3']: Seems to be essential for minus-
CC       strand RNAs and subgenomic 26S mRNAs synthesis (By similarity).
CC       Displays mono-ADP-ribosylhydrolase activity (Probable). ADP-
CC       ribosylation is a post-translational modification that controls various
CC       processes of the host cell and the virus probably needs to revert it
CC       for optimal viral replication (Probable). Binds proteins of FXR family
CC       and sequesters them into the viral RNA replication complexes thereby
CC       inhibiting the formation of host stress granules on viral mRNAs
CC       (Probable). The nsp3-FXR complexes bind viral RNAs and probably
CC       orchestrate the assembly of viral replication complexes, thanks to the
CC       ability of FXR family members to self-assemble and bind DNA (Probable).
CC       {ECO:0000250|UniProtKB:P03317, ECO:0000305}.
CC   -!- FUNCTION: [Non-structural protein 3]: Seems to be essential for minus-
CC       strand RNAs and subgenomic 26S mRNAs synthesis (By similarity).
CC       Displays mono-ADP-ribosylhydrolase activity (By similarity). ADP-
CC       ribosylation is a post-translantional modification that controls
CC       various processes of the host cell and the virus probably needs to
CC       revert it for optimal viral replication (By similarity). Binds proteins
CC       of G3BP family and sequesters them into the viral RNA replication
CC       complexes thereby inhibiting the formation of host stress granules on
CC       viral mRNAs (By similarity). The nsp3'-G3BP complexes bind viral RNAs
CC       and probably orchestrate the assembly of viral replication complexes,
CC       thanks to the ability of G3BP family members to self-assemble and bind
CC       DNA (By similarity). {ECO:0000250|UniProtKB:P03317,
CC       ECO:0000250|UniProtKB:Q8JUX6}.
CC   -!- FUNCTION: [RNA-directed RNA polymerase nsP4]: RNA dependent RNA
CC       polymerase (By similarity). Replicates genomic and antigenomic RNA by
CC       recognizing replications specific signals. The early replication
CC       complex formed by the polyprotein P123 and nsP4 synthesizes minus-
CC       strand RNAs (By similarity). The late replication complex composed of
CC       fully processed nsP1-nsP4 is responsible for the production of genomic
CC       and subgenomic plus-strand RNAs (By similarity). The core catalytic
CC       domain of nsP4 also possesses terminal adenylyltransferase (TATase)
CC       activity that is probably involved in maintenance and repair of the
CC       poly(A) tail, an element required for replication of the viral genome
CC       (By similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=GTP + S-adenosyl-L-methionine = N(7)-methyl-GTP + S-adenosyl-
CC         L-homocysteine; Xref=Rhea:RHEA:46948, ChEBI:CHEBI:37565,
CC         ChEBI:CHEBI:57856, ChEBI:CHEBI:59789, ChEBI:CHEBI:87133;
CC         Evidence={ECO:0000250|UniProtKB:P27282};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=[nsP1 protein]-L-histidine + N(7)-methyl-GTP = [nsP1 protein]-
CC         N(tele)-(N(7)-methylguanosine 5'-phospho)-L-histidine + diphosphate;
CC         Xref=Rhea:RHEA:54792, Rhea:RHEA-COMP:13994, Rhea:RHEA-COMP:13995,
CC         ChEBI:CHEBI:29979, ChEBI:CHEBI:33019, ChEBI:CHEBI:87133,
CC         ChEBI:CHEBI:138334; Evidence={ECO:0000250|UniProtKB:P03317};
CC       PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:54793;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=[nsP1 protein]-N(tele)-(N(7)-methylguanosine 5'-phospho)-L-
CC         histidine + a 5'-end diphospho-(purine-ribonucleoside) in mRNA + H(+)
CC         = [nsP1 protein]-L-histidine + a 5'-end (N(7)-methyl 5'-
CC         triphosphoguanosine)-(purine-ribonucleoside) in mRNA;
CC         Xref=Rhea:RHEA:54800, Rhea:RHEA-COMP:12925, Rhea:RHEA-COMP:13929,
CC         Rhea:RHEA-COMP:13994, Rhea:RHEA-COMP:13995, ChEBI:CHEBI:15378,
CC         ChEBI:CHEBI:29979, ChEBI:CHEBI:133968, ChEBI:CHEBI:138276,
CC         ChEBI:CHEBI:138334; Evidence={ECO:0000250|UniProtKB:P27282};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=a 5'-end triphospho-(purine-ribonucleoside) in mRNA + H2O = a
CC         5'-end diphospho-(purine-ribonucleoside) in mRNA + H(+) + phosphate;
CC         Xref=Rhea:RHEA:11008, Rhea:RHEA-COMP:13929, Rhea:RHEA-COMP:13942,
CC         ChEBI:CHEBI:15377, ChEBI:CHEBI:15378, ChEBI:CHEBI:43474,
CC         ChEBI:CHEBI:138276, ChEBI:CHEBI:138288; EC=3.1.3.33;
CC         Evidence={ECO:0000250|UniProtKB:P08411};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-
CC         diphosphate + H(+) + phosphate; Xref=Rhea:RHEA:23680,
CC         ChEBI:CHEBI:15377, ChEBI:CHEBI:15378, ChEBI:CHEBI:43474,
CC         ChEBI:CHEBI:57930, ChEBI:CHEBI:61557; EC=3.6.1.15;
CC         Evidence={ECO:0000250|UniProtKB:Q8JUX6};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=ATP + H2O = ADP + H(+) + phosphate; Xref=Rhea:RHEA:13065,
CC         ChEBI:CHEBI:15377, ChEBI:CHEBI:15378, ChEBI:CHEBI:30616,
CC         ChEBI:CHEBI:43474, ChEBI:CHEBI:456216; EC=3.6.4.13;
CC         Evidence={ECO:0000250|UniProtKB:Q8JUX6};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=a ribonucleoside 5'-triphosphate + RNA(n) = diphosphate +
CC         RNA(n+1); Xref=Rhea:RHEA:21248, Rhea:RHEA-COMP:14527, Rhea:RHEA-
CC         COMP:17342, ChEBI:CHEBI:33019, ChEBI:CHEBI:61557, ChEBI:CHEBI:140395;
CC         EC=2.7.7.48; Evidence={ECO:0000255|PROSITE-ProRule:PRU00539};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=ATP + RNA(n) = diphosphate + RNA(n)-3'-adenine ribonucleotide;
CC         Xref=Rhea:RHEA:11332, Rhea:RHEA-COMP:14527, Rhea:RHEA-COMP:17347,
CC         ChEBI:CHEBI:30616, ChEBI:CHEBI:33019, ChEBI:CHEBI:140395,
CC         ChEBI:CHEBI:173115; EC=2.7.7.19;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=4-O-(ADP-D-ribosyl)-L-aspartyl-[protein] + H2O = ADP-D-ribose
CC         + H(+) + L-aspartyl-[protein]; Xref=Rhea:RHEA:54428, Rhea:RHEA-
CC         COMP:9867, Rhea:RHEA-COMP:13832, ChEBI:CHEBI:15377,
CC         ChEBI:CHEBI:15378, ChEBI:CHEBI:29961, ChEBI:CHEBI:57967,
CC         ChEBI:CHEBI:138102; Evidence={ECO:0000250|UniProtKB:P03317};
CC       PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:54429;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=5-O-(ADP-D-ribosyl)-L-glutamyl-[protein] + H2O = ADP-D-ribose
CC         + H(+) + L-glutamyl-[protein]; Xref=Rhea:RHEA:58248, Rhea:RHEA-
CC         COMP:10208, Rhea:RHEA-COMP:15089, ChEBI:CHEBI:15377,
CC         ChEBI:CHEBI:15378, ChEBI:CHEBI:29973, ChEBI:CHEBI:57967,
CC         ChEBI:CHEBI:142540; Evidence={ECO:0000250|UniProtKB:P03317};
CC       PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:58249;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC   -!- CATALYTIC ACTIVITY:
CC       Reaction=ADP-beta-D-ribose 1''-phosphate + H2O = ADP-D-ribose +
CC         phosphate; Xref=Rhea:RHEA:25029, ChEBI:CHEBI:15377,
CC         ChEBI:CHEBI:43474, ChEBI:CHEBI:57967, ChEBI:CHEBI:58753; EC=3.1.3.84;
CC         Evidence={ECO:0000250|UniProtKB:Q8JUX6};
CC       PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:25030;
CC         Evidence={ECO:0000250|UniProtKB:Q8JUX6};
CC   -!- COFACTOR:
CC       Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC       Name=Mn(2+); Xref=ChEBI:CHEBI:29035;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC       Note=For nsP4 adenylyltransferase activity; Mn(2+) supports catalysis
CC       at 60% of the levels observed with Mg(2+).
CC       {ECO:0000250|UniProtKB:P03317};
CC   -!- COFACTOR:
CC       Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
CC         Evidence={ECO:0000250|UniProtKB:P03317};
CC       Note=For nsP4 RNA-directed RNA polymerase activity.
CC       {ECO:0000250|UniProtKB:P03317};
CC   -!- COFACTOR:
CC       Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
CC         Evidence={ECO:0000250|UniProtKB:P27282};
CC       Note=For nsP1 guanylylation. {ECO:0000250|UniProtKB:P27282};
CC   -!- COFACTOR:
CC       Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
CC       Note=For nsP2 RNA triphosphatase activity.
CC       {ECO:0000250|UniProtKB:Q8JUX6};
CC   -!- COFACTOR:
CC       Name=Mg(2+); Xref=ChEBI:CHEBI:18420;
CC       Note=For nsP2 NTPase activity. {ECO:0000250|UniProtKB:Q8JUX6};
CC   -!- SUBUNIT: [mRNA-capping enzyme nsP1]: Interacts with non-structural
CC       protein 3 (By similarity). Interacts with RNA-directed RNA polymerase
CC       nsP4 (By similarity). Interacts with protease nsP2 (By similarity).
CC       interacts with itself (By similarity). {ECO:0000250|UniProtKB:P03317,
CC       ECO:0000250|UniProtKB:P27282}.
CC   -!- SUBUNIT: [Non-structural protein 3]: Interacts with mRNA-capping enzyme
CC       nsP1 (By similarity). Interacts with host DDX1 (By similarity).
CC       Interacts with host DDX3 (By similarity). Interacts (via C-terminus)
CC       with host G3BP1; this interaction inhibits the formation of host stress
CC       granules on viral mRNAs and the nsp3-G3BP1 complexes bind viral RNAs
CC       and probably orchestrate the assembly of viral replication complexes
CC       (By similarity). Interacts (via C-terminus) with host G3BP2; this
CC       interaction inhibits the formation of host stress granules on viral
CC       mRNAs and the nsp3-G3BP2 complexes bind viral RNAs and probably
CC       orchestrate the assembly of viral replication complexes (By
CC       similarity). {ECO:0000250|UniProtKB:P03317,
CC       ECO:0000250|UniProtKB:P27282}.
CC   -!- SUBUNIT: [RNA-directed RNA polymerase nsP4]: Interacts with mRNA-
CC       capping enzyme nsP1 (By similarity). Interacts with protease nsP2 (By
CC       similarity). interacts with itself (By similarity).
CC       {ECO:0000250|UniProtKB:P03317, ECO:0000250|UniProtKB:P27282}.
CC   -!- SUBUNIT: [Protease nsP2]: Interacts with RNA-directed RNA polymerase
CC       nsP4 (By similarity). Interacts with mRNA-capping enzyme nsP1 (By
CC       similarity). Interacts with KPNA1/karyopherin-alpha1; this interaction
CC       probably allows the active transport of protease nsP2 into the host
CC       nucleus (By similarity). {ECO:0000250|UniProtKB:P03317,
CC       ECO:0000250|UniProtKB:P27282}.
CC   -!- SUBCELLULAR LOCATION: [Polyprotein P1234]: Host cytoplasmic vesicle
CC       membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305}.
CC       Note=Part of cytoplasmic vesicles, which are probably formed at the
CC       plasma membrane and internalized leading to late endosomal/lysosomal
CC       spherules containing the replication complex. {ECO:0000305}.
CC   -!- SUBCELLULAR LOCATION: [Polyprotein P123']: Host cytoplasmic vesicle
CC       membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305}.
CC       Note=Part of cytoplasmic vesicles, which are probably formed at the
CC       plasma membrane and internalized leading to late endosomal/lysosomal
CC       spherules containing the replication complex. {ECO:0000305}.
CC   -!- SUBCELLULAR LOCATION: [Polyprotein P123]: Host cytoplasmic vesicle
CC       membrane {ECO:0000305}; Peripheral membrane protein {ECO:0000305}.
CC       Note=Part of cytoplasmic vesicles, which are probably formed at the
CC       plasma membrane and internalized leading to late endosomal/lysosomal
CC       spherules containing the replication complex. {ECO:0000305}.
CC   -!- SUBCELLULAR LOCATION: [mRNA-capping enzyme nsP1]: Host cytoplasmic
CC       vesicle membrane {ECO:0000250|UniProtKB:P08411}; Lipid-anchor
CC       {ECO:0000250|UniProtKB:P08411}. Host cell membrane
CC       {ECO:0000250|UniProtKB:P08411}; Lipid-anchor
CC       {ECO:0000250|UniProtKB:P08411}; Cytoplasmic side
CC       {ECO:0000250|UniProtKB:P08411}. Host cell projection, host filopodium
CC       {ECO:0000250|UniProtKB:P08411}. Note=In the late phase of infection,
CC       the polyprotein is quickly cleaved before localization to cellular
CC       membranes. Then a fraction of nsP1 localizes to the inner surface of
CC       the plasma membrane and its filopodial extensions. Only the
CC       palmitoylated nsP1 localizes to the host filopodia (By similarity).
CC       NsP1 is also part of cytoplasmic vesicles, which are probably formed at
CC       the plasma membrane and internalized leading to late
CC       endosomal/lysosomal spherules containing the replication complex (By
CC       similarity). {ECO:0000250|UniProtKB:P08411}.
CC   -!- SUBCELLULAR LOCATION: [Protease nsP2]: Host cytoplasmic vesicle
CC       membrane {ECO:0000250|UniProtKB:P08411}; Peripheral membrane protein
CC       {ECO:0000250|UniProtKB:P08411}. Host nucleus
CC       {ECO:0000250|UniProtKB:P27282}. Host cytoplasm
CC       {ECO:0000250|UniProtKB:P27282}. Note=In the late phase of infection,
CC       the polyprotein is quickly cleaved before localization to cellular
CC       membranes. Then approximately half of nsP2 is found in the nucleus (By
CC       similarity). Shuttles between cytoplasm and nucleus (By similarity).
CC       NsP2 is also part of cytoplasmic vesicles, which are probably formed at
CC       the plasma membrane and internalized leading to late
CC       endosomal/lysosomal spherules containing the replication complex (By
CC       similarity). {ECO:0000250|UniProtKB:P08411,
CC       ECO:0000250|UniProtKB:P27282}.
CC   -!- SUBCELLULAR LOCATION: [Non-structural protein 3]: Host cytoplasmic
CC       vesicle membrane {ECO:0000250|UniProtKB:P03317}; Peripheral membrane
CC       protein {ECO:0000305}. Note=In the late phase of infection, the
CC       polyprotein is quickly cleaved before localization to cellular
CC       membranes. Then nsP3 and nsP3' form aggregates in cytoplasm (By
CC       similarity). NsP3 is also part of cytoplasmic vesicles, which are
CC       probably formed at the plasma membrane and internalized leading to late
CC       endosomal/lysosomal spherules containing the replication complex (By
CC       similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- SUBCELLULAR LOCATION: [Non-structural protein 3']: Host cytoplasmic
CC       vesicle membrane {ECO:0000250|UniProtKB:P03317}; Peripheral membrane
CC       protein {ECO:0000305}. Note=In the late phase of infection, the
CC       polyprotein is quickly cleaved before localization to cellular
CC       membranes. Then nsP3 and nsP3' form aggregates in cytoplasm (By
CC       similarity). NsP3' is also part of cytoplasmic vesicles, which are
CC       probably formed at the plasma membrane and internalized leading to late
CC       endosomal/lysosomal spherules containing the replication complex (By
CC       similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- SUBCELLULAR LOCATION: [RNA-directed RNA polymerase nsP4]: Host
CC       cytoplasmic vesicle membrane; Peripheral membrane protein
CC       {ECO:0000250|UniProtKB:P03317}. Note=NsP4 is part of cytoplasmic
CC       vesicles, which are probably formed at the plasma membrane and
CC       internalized leading to late endosomal/lysosomal spherules containing
CC       the replication complex. {ECO:0000250|UniProtKB:P08411}.
CC   -!- DOMAIN: [Protease nsP2]: The N-terminus exhibits NTPase and RNA
CC       triphosphatase activities and is proposed to have helicase activity,
CC       whereas the C-terminus possesses protease activity (By similarity).
CC       Contains a nuclear localization signal and a nuclear export signal,
CC       these two motifs are probably involved in the shuttling between the
CC       cytoplasm and the nucleus of nsP2 (By similarity). The C-terminus is
CC       required for promoting the export of host STAT1 (By similarity).
CC       {ECO:0000250|UniProtKB:P27282, ECO:0000250|UniProtKB:Q8JUX6}.
CC   -!- DOMAIN: [Non-structural protein 3]: In the N-terminus, the macro domain
CC       displays a mono-ADP-ribosylhydrolase activity (By similarity). The
CC       central part has a zinc-binding function (By similarity). The C-
CC       terminus contains two FGDF motifs necessary and sufficient for
CC       formation of the nsP3/G3BP1 complex (By similarity).
CC       {ECO:0000250|UniProtKB:P03317, ECO:0000250|UniProtKB:P08411}.
CC   -!- DOMAIN: [Non-structural protein 3']: In the N-terminus, the macro
CC       domain displays a mono-ADP-ribosylhydrolase activity (By similarity).
CC       The central part has a zinc-binding function (By similarity). The C-
CC       terminus contains two FGDF motifs necessary and sufficient for
CC       formation of the nsP3'/G3BP1 complex (By similarity).
CC       {ECO:0000250|UniProtKB:P03317, ECO:0000250|UniProtKB:P08411}.
CC   -!- PTM: [Polyprotein P1234]: Specific enzymatic cleavages in vivo yield
CC       mature proteins (By similarity). The processing of the polyprotein is
CC       temporally regulated (By similarity). In early stages (1.7 hpi), P1234
CC       is first cleaved in trans through its nsP2 protease activity, releasing
CC       P123' and nsP4, which associate to form the early replication complex
CC       (By similarity). At the same time, P1234 is also cut at the nsP1/nsP2
CC       site early in infection but with lower efficiency (By similarity).
CC       After replication of the viral minus-strand RNAs (4 hpi), the
CC       polyproteins are cut at the nsP1/nsP2 and nsP2/nsP3 sites very
CC       efficiently, preventing accumulation of P123' and P1234 and allowing
CC       the formation of the late replication complex (By similarity).
CC       NsP3'/nsP4 site is not cleaved anymore and P34 is produced rather than
CC       nsP4 (By similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- PTM: [Polyprotein P123]: Specific enzymatic cleavages in vivo yield
CC       mature proteins (By similarity). The processing of the polyprotein is
CC       temporally regulated (By similarity). In early stages (1.7 hpi), P123
CC       is cleaved at the nsP1/nsP2 site with low efficiency (By similarity).
CC       After replication of the viral minus-strand RNAs (4 hpi), the
CC       polyproteins are cut at the nsP1/nsP2 and nsP2/nsP3 sites very
CC       efficiently, preventing accumulation of P123 and allowing the formation
CC       of the late replication complex (By similarity).
CC       {ECO:0000250|UniProtKB:P03317}.
CC   -!- PTM: [Polyprotein P123']: Specific enzymatic cleavages in vivo yield
CC       mature proteins (By similarity). The processing of the polyprotein is
CC       temporally regulated (By similarity). In early stages (1.7 hpi), P123'
CC       is cleaved at the nsP1/nsP2 site with low efficiency (By similarity).
CC       After replication of the viral minus-strand RNAs (4 hpi), the
CC       polyproteins are cut at the nsP1/nsP2 and nsP2/nsP3 sites very
CC       efficiently, preventing accumulation of P123' and allowing the
CC       formation of the late replication complex (By similarity).
CC       {ECO:0000250|UniProtKB:P03317}.
CC   -!- PTM: [mRNA-capping enzyme nsP1]: Palmitoylated by host
CC       palmitoyltransferases ZDHHC2 and ZDHHC19.
CC       {ECO:0000250|UniProtKB:Q8JUX6}.
CC   -!- PTM: [Non-structural protein 3]: Phosphorylated by host on serines and
CC       threonines. {ECO:0000250|UniProtKB:P08411}.
CC   -!- PTM: [Non-structural protein 3']: Phosphorylated by host on serines and
CC       threonines. {ECO:0000250|UniProtKB:P08411}.
CC   -!- PTM: [RNA-directed RNA polymerase nsP4]: Ubiquitinated; targets the
CC       protein for rapid degradation via the ubiquitin system (By similarity).
CC       Nsp4 is present in extremely low quantities due to low frequency of
CC       translation through the amber stop-codon and the degradation by the
CC       ubiquitin pathway (By similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- MISCELLANEOUS: Viral replication produces dsRNA in the late phase of
CC       infection, resulting in a strong activation of host EIF2AK2/PKR,
CC       leading to almost complete phosphorylation of EIF2A (By similarity).
CC       This inactivates completely cellular translation initiation, resulting
CC       shutoff of host proteins synthesis (By similarity). However,
CC       phosphorylation of EIF2A is probably not the only mechanism responsible
CC       for the host translation shutoff (By similarity). The viral translation
CC       can still occur normally because it relies on a hairpin structure in
CC       the coding region of sgRNA and is EIF2A-, EIF2D-, EIF4G- EIF4A-
CC       independent (By similarity). {ECO:0000250|UniProtKB:P03317}.
CC   -!- MISCELLANEOUS: The genome codes for P123, but readthrough of a
CC       terminator codon UGA occurs between the codons for Glu-1794 and Leu-
CC       1796 giving rise to P1234 (Probable). P1234 is cleaved quickly by nsP2
CC       into P123' and nsP4 (By similarity). Further processing of p123' gives
CC       nsP1, nsP2 and nsP3' which is 6 amino acids longer than nsP3 since the
CC       cleavage site is after the readthrough (By similarity). This unusual
CC       molecular mechanism ensures that few nsP4 are produced compared to
CC       other non-structural proteins (By similarity). Mutant viruses with no
CC       alternative termination site grow significantly slower than wild-type
CC       virus (By similarity). The opal termination codon is frequently mutated
CC       to a sense codon on passage in cell culture (By similarity). The
CC       presence of the opal codon may be a requirement for viral maintenance
CC       in both vertebrate and invertebrate hosts and a selective advantage may
CC       be conferred in cell culture for the sense codon (By similarity).
CC       {ECO:0000250|UniProtKB:O90368, ECO:0000250|UniProtKB:P03317,
CC       ECO:0000305}.
CC   ---------------------------------------------------------------------------
CC   Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC   Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC   ---------------------------------------------------------------------------
DR   EMBL; U73745; AAB40701.1; ALT_SEQ; Genomic_RNA.
DR   RefSeq; NP_054023.1; NC_001786.1.
DR   PRIDE; P87515; -.
DR   GeneID; 1489700; -.
DR   KEGG; vg:1489700; -.
DR   Proteomes; UP000007609; Genome.
DR   GO; GO:0044162; C:host cell cytoplasmic vesicle membrane; IEA:UniProtKB-SubCell.
DR   GO; GO:0044176; C:host cell filopodium; IEA:UniProtKB-SubCell.
DR   GO; GO:0042025; C:host cell nucleus; IEA:UniProtKB-SubCell.
DR   GO; GO:0020002; C:host cell plasma membrane; IEA:UniProtKB-SubCell.
DR   GO; GO:0016020; C:membrane; IEA:UniProtKB-KW.
DR   GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR   GO; GO:0016887; F:ATP hydrolysis activity; IEA:RHEA.
DR   GO; GO:0008234; F:cysteine-type peptidase activity; IEA:UniProtKB-KW.
DR   GO; GO:0005525; F:GTP binding; IEA:UniProtKB-KW.
DR   GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
DR   GO; GO:0008174; F:mRNA methyltransferase activity; IEA:InterPro.
DR   GO; GO:0004651; F:polynucleotide 5'-phosphatase activity; IEA:UniProtKB-EC.
DR   GO; GO:0004652; F:polynucleotide adenylyltransferase activity; IEA:UniProtKB-EC.
DR   GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
DR   GO; GO:0003724; F:RNA helicase activity; IEA:UniProtKB-EC.
DR   GO; GO:0003968; F:RNA-directed 5'-3' RNA polymerase activity; IEA:UniProtKB-KW.
DR   GO; GO:0006370; P:7-methylguanosine mRNA capping; IEA:UniProtKB-KW.
DR   GO; GO:0006508; P:proteolysis; IEA:UniProtKB-KW.
DR   GO; GO:0039523; P:suppression by virus of host mRNA transcription via inhibition of RNA polymerase II activity; IEA:UniProtKB-KW.
DR   GO; GO:0006351; P:transcription, DNA-templated; IEA:InterPro.
DR   GO; GO:0039694; P:viral RNA genome replication; IEA:InterPro.
DR   CDD; cd21557; Macro_X_Nsp3-like; 1.
DR   Gene3D; 3.40.220.10; -; 1.
DR   Gene3D; 3.40.50.150; -; 1.
DR   Gene3D; 3.40.50.300; -; 2.
DR   Gene3D; 3.90.70.110; -; 1.
DR   InterPro; IPR027351; (+)RNA_virus_helicase_core_dom.
DR   InterPro; IPR002588; Alphavirus-like_MT_dom.
DR   InterPro; IPR002620; Alphavirus_nsp2pro.
DR   InterPro; IPR044936; Alphavirus_nsp2pro_sf.
DR   InterPro; IPR043502; DNA/RNA_pol_sf.
DR   InterPro; IPR002589; Macro_dom.
DR   InterPro; IPR043472; Macro_dom-like.
DR   InterPro; IPR044371; Macro_X_NSP3-like.
DR   InterPro; IPR027417; P-loop_NTPase.
DR   InterPro; IPR007094; RNA-dir_pol_PSvirus.
DR   InterPro; IPR029063; SAM-dependent_MTases_sf.
DR   InterPro; IPR001788; Tymovirus_RNA-dep_RNA_pol.
DR   Pfam; PF01661; Macro; 1.
DR   Pfam; PF01707; Peptidase_C9; 1.
DR   Pfam; PF00978; RdRP_2; 1.
DR   Pfam; PF01443; Viral_helicase1; 1.
DR   Pfam; PF01660; Vmethyltransf; 1.
DR   SMART; SM00506; A1pp; 1.
DR   SUPFAM; SSF52540; SSF52540; 1.
DR   SUPFAM; SSF52949; SSF52949; 1.
DR   SUPFAM; SSF53335; SSF53335; 1.
DR   SUPFAM; SSF56672; SSF56672; 1.
DR   PROSITE; PS51743; ALPHAVIRUS_MT; 1.
DR   PROSITE; PS51154; MACRO; 1.
DR   PROSITE; PS51520; NSP2PRO; 1.
DR   PROSITE; PS51657; PSRV_HELICASE; 1.
DR   PROSITE; PS50507; RDRP_SSRNA_POS; 1.
PE   3: Inferred from homology;
KW   ATP-binding; Eukaryotic host gene expression shutoff by virus;
KW   Eukaryotic host transcription shutoff by virus; GTP-binding; Helicase;
KW   Host cell membrane; Host cell projection; Host cytoplasm;
KW   Host cytoplasmic vesicle; Host gene expression shutoff by virus;
KW   Host membrane; Host nucleus; Host-virus interaction; Hydrolase;
KW   Inhibition of host RNA polymerase II by virus; Lipoprotein; Membrane;
KW   Metal-binding; Methyltransferase; mRNA capping; mRNA processing;
KW   Multifunctional enzyme; Nucleotide-binding; Nucleotidyltransferase;
KW   Palmitate; Protease; RNA suppression of termination; RNA-binding;
KW   RNA-directed RNA polymerase; S-adenosyl-L-methionine; Thiol protease;
KW   Transferase; Ubl conjugation; Viral RNA replication; Zinc.
FT   CHAIN           1..2410
FT                   /note="Polyprotein P1234"
FT                   /id="PRO_0000308383"
FT   CHAIN           1..1801
FT                   /note="Polyprotein P123'"
FT                   /id="PRO_0000228736"
FT   CHAIN           1..1794
FT                   /note="Polyprotein P123"
FT                   /id="PRO_0000228737"
FT   CHAIN           1..533
FT                   /note="mRNA-capping enzyme nsP1"
FT                   /id="PRO_0000228738"
FT   CHAIN           534..1331
FT                   /note="Protease nsP2"
FT                   /id="PRO_0000228739"
FT   CHAIN           1332..1801
FT                   /note="Non-structural protein 3'"
FT                   /id="PRO_0000228740"
FT   CHAIN           1332..1794
FT                   /note="Non-structural protein 3"
FT                   /id="PRO_0000228741"
FT   CHAIN           1801..2411
FT                   /note="RNA-directed RNA polymerase nsP4"
FT                   /id="PRO_0000228742"
FT   DOMAIN          30..257
FT                   /note="Alphavirus-like MT"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU01079"
FT   DOMAIN          688..840
FT                   /note="(+)RNA virus helicase ATP-binding"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00990"
FT   DOMAIN          841..989
FT                   /note="(+)RNA virus helicase C-terminal"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00990"
FT   DOMAIN          1002..1325
FT                   /note="Peptidase C9"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00853"
FT   DOMAIN          1332..1491
FT                   /note="Macro"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00490"
FT   DOMAIN          2165..2280
FT                   /note="RdRp catalytic"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00539"
FT   REGION          242..261
FT                   /note="NsP1 membrane-binding"
FT                   /evidence="ECO:0000250|UniProtKB:P08411"
FT   REGION          1003..1022
FT                   /note="Nucleolus localization signal"
FT                   /evidence="ECO:0000250|UniProtKB:P08411"
FT   REGION          1685..1724
FT                   /note="Disordered"
FT                   /evidence="ECO:0000256|SAM:MobiDB-lite"
FT   MOTIF           1056..1065
FT                   /note="Nuclear export signal"
FT                   /evidence="ECO:0000250|UniProtKB:P27282"
FT   MOTIF           1180..1184
FT                   /note="Nuclear localization signal"
FT                   /evidence="ECO:0000250|UniProtKB:P08411"
FT   MOTIF           1760..1763
FT                   /note="FGDF; binding to host G3BP1"
FT                   /evidence="ECO:0000250|UniProtKB:P08411"
FT   MOTIF           1778..1781
FT                   /note="FGDF; binding to host G3BP1"
FT                   /evidence="ECO:0000250|UniProtKB:P08411"
FT   COMPBIAS        1699..1724
FT                   /note="Pro residues"
FT                   /evidence="ECO:0000256|SAM:MobiDB-lite"
FT   ACT_SITE        1011
FT                   /note="For cysteine protease nsP2 activity"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00853"
FT   ACT_SITE        1081
FT                   /note="For cysteine protease nsP2 activity"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00853"
FT   BINDING         719..726
FT                   /ligand="a ribonucleoside 5'-triphosphate"
FT                   /ligand_id="ChEBI:CHEBI:61557"
FT                   /evidence="ECO:0000255|PROSITE-ProRule:PRU00990"
FT   BINDING         1341
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:P36328"
FT   BINDING         1355
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
FT   BINDING         1363
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
FT   BINDING         1443
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:P36328"
FT   BINDING         1444
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:P36328"
FT   BINDING         1445
FT                   /ligand="ADP-D-ribose"
FT                   /ligand_id="ChEBI:CHEBI:57967"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
FT   BINDING         1593
FT                   /ligand="Zn(2+)"
FT                   /ligand_id="ChEBI:CHEBI:29105"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   BINDING         1595
FT                   /ligand="Zn(2+)"
FT                   /ligand_id="ChEBI:CHEBI:29105"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   BINDING         1618
FT                   /ligand="Zn(2+)"
FT                   /ligand_id="ChEBI:CHEBI:29105"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   BINDING         1636
FT                   /ligand="Zn(2+)"
FT                   /ligand_id="ChEBI:CHEBI:29105"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   SITE            39
FT                   /note="Involved in the phosphoramide link with 7-methyl-
FT                   GMP"
FT                   /evidence="ECO:0000250|UniProtKB:P27282"
FT   SITE            533..534
FT                   /note="Cleavage; by protease nsP2"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   SITE            1331..1332
FT                   /note="Cleavage; by protease nsP2"
FT                   /evidence="ECO:0000250|UniProtKB:P03317"
FT   SITE            1801..1802
FT                   /note="Cleavage; by protease nsP2"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
FT   LIPID           415
FT                   /note="S-palmitoyl cysteine; by host"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
FT   LIPID           417
FT                   /note="S-palmitoyl cysteine; by host"
FT                   /evidence="ECO:0000250|UniProtKB:Q8JUX6"
SQ   SEQUENCE   2411 AA;  269125 MW;  80650CDB4639DE29 CRC64;
     MAKPVVKIDV EPESHFAKQV QSCFPQFEIE AVQTTPNDHA HARAFSHLAT KLIEMETAKD
     QIILDIGSAP ARRLYSEHKY HCVCPMKCTE DPERMLGYAR KLIAGSAKGK AEKLRDLRDV
     LATPDIETQS LCLHTDASCR YRGDVAVYQD VYAIDAPTTL YHQALKGVRT AYWIGFDTTP
     FMYDALAGAY PLYSTNWADE QVLESRNIGL CSDKVSEGGK KGRSILRKKF LKQSDRVMFS
     VGSTLYTESR KLLQSWHLPS TFHLKGKSSF TCRCDTIVSC EGYVLKKITM CPGVTGKPIG
     YAVTHHKEGF VVGKVTDTIR GERVSFAVCT YVPTTLCDQM TGILATEVTA DDAQKLLVGL
     NQRIVVNGRT QRNTNTMKNY LLPLVAQALA KWAKEAKQDM EDERPLNERQ RTLTCLCCWA
     FKRNKRHAIY KRPDTQSIVK VPCEFTSFPL VSLWSAGMSI SLRQKLKMML QARQPTQIAA
     VTEELIQEAA AVEQEAVDTA NAELDHAAWP SIVDTTERHV EVEVEELDQR AGEGVVETPR
     NSIKVSTQIG DALIGSYLIL SPQAVLRSEK LACIHDLAEQ VKLVTHSGRS GRYAVDKYXG
     RVLVPTGVAI DIQSFQALSE SATLVYNERE FVNRKLWHIA VYGAALNTDE EGYEKVPVER
     AESDYVFDVD QKMCLKKEQA SGWVLCGELV NPPFHEFAYE GLRTRPSAPY KVHTVGVYGV
     PGSGKSAIIK NTVTMSDLVL SGKKENCLEI MNDVLKHRAL RITAKTVDSV LLNGVKHTPN
     ILYIDEAFSC HAGTLLATIA IVRPKQKVVL CGDPKQCGFF NMMQLKVNYN HDICSEVFHK
     SISRRCTQDI TAIVSKLHYQ DRMRTTNPRK GDIIIDTTGT TKPAKTDLIL TCFRGWVKQL
     QQDYRGNEVM TAAASQGLTR ASVYAVRTKV NENPLYAQTS EHVNVLLTRT ENKLVWKTLS
     TDPWIKTLTN PPRGHYTATI AEWEAEHQGI MKAIQGYAPP VNTFMNKVNV CWAKTLTPVL
     ETAGISLSAE DWSELLPPFA QDVAYSPEVA LNIICTKMYG FDLDTGLFSR PSVPMTYTKD
     HWDNRVGGKM YGFSQQAYDQ LARRHPYLRG REKSGMQIVV TEMRIQRPRS DANIIPINRR
     LPHSLVATHE YRRAARAEEF FTTTRGYTML LVSEYNMNLP NKKITWLAPI GTQGAHHTAN
     LNLGIPPLLG SFDAVVVNMP TPFRNHHYQQ CEDHAMKLQM LAGDALRHIK PGGSLWVKAY
     GYADRHSEHV VLALARKFKS FRVTQPSCVT SNTEVFLHFS IFDNGKRAIA LHSANRKANS
     IFQNTFLPAG SAPAYRVKRG DISNAPEDAV VNAANQQGVK GAGVCGAIYR KWPDAFGDVA
     TPTGTAVSKS VQDKLVIHAV GPNFSKCSEE EGDRDLASAY RAAAEIVMDK KITTVAVPLL
     STGIYAGGKN RVEQSLNHLF TAFDNTDADV TIYCMDKTWE KKIKEAIDHR TSVEMVQDDV
     QLEEELVRVH PLSSLAGRKG YSTDSGRVFS YLEGTKFHQT AVDIAEMQVL WPALKESNEQ
     IVAYTLGESM DQIRGKCPTE DTDASTPPRT VPCLCRYAMT PERVYRLKCT NTTQFTVCSS
     FELPKYHIQG VQRVKCERII ILDPTVPPTY KRPCIRRYPS TISCNSSEDS RSLSTFSVSS
     DSSIGSLPVG DTRPIPAPRT IFRPVPAPRA PVLRTTPPPK PPRTFTVRAE VHQAPPTPVP
     PPRPKRAAKL AREMHPGFTF GDFGEHEVEE LTASPLTFGD FAEGEIQGMG VEFEXLGRAG
     GYIFSSDTGP GHLQQRSVLQ NCTAECIYEP AKLEKIHAPK LDKTKEDILR SKYQMKPSEA
     NKSRYQSRKV ENMKAEIVGR LLDGLGEYLG TEHPVECYRI TYPVPIYSTS DLRGLSSAKT
     AVRACNAFLE ANFPSVTSYK ITDEYDAYLD MVDGSESCLD RSSFSPSRLR SFPKTHSYLD
     PQINSAVPSP FQNTLQNVLA AATKRNCNVT QMRELPTYDS AVLNVEAFRK YACKPDVWDE
     YRDNPICITT ENVTTYVAKL KGPKAAALFA KTHNLIPLHQ VPMDKFTVDM KRDVKVTPGT
     KHTEERPKVQ VIQAAEPLAT AYLCGIHREL VRRLNNALFP NIHTLFDMSA EDFDAIIAEH
     FKHGDHVLET DIASFDKSQD DSMALTALMI LEDLGVDQNL MNLIEAAFGE IVSTHLPTGT
     RFKFGAMMKS GMFLTLFVNT ILNVVIACRV LEDQLAQSPW PAFIGDDNII HGIISDKLMA
     DRCATWMNME VKILDSIVGI RPPYFCGGFI VCDDVTGTAC RVADPLKRLF KLGKPLPLDD
     GQDEDRRRAL HDEVKTWSRV GLRHRVCEAI EDRYAVHSSE LVLLALTTLS KNLKSFRNIR
     GKPIHLYGGP K
 
 
维奥蛋白资源库 - 中文蛋白资源 CopyRight © 2010-2024