POL_JEMBR
ID POL_JEMBR Reviewed; 1432 AA.
AC Q82851; Q82859;
DT 23-JAN-2007, integrated into UniProtKB/Swiss-Prot.
DT 01-NOV-1996, sequence version 1.
DT 03-AUG-2022, entry version 111.
DE RecName: Full=Gag-Pol polyprotein;
DE AltName: Full=Pr170Gag-Pol;
DE Contains:
DE RecName: Full=Matrix protein p16;
DE Short=MA;
DE Contains:
DE RecName: Full=Capsid protein p26;
DE Short=CA;
DE Contains:
DE RecName: Full=Transframe peptide;
DE AltName: Full=p11;
DE Contains:
DE RecName: Full=Protease;
DE EC=3.4.23.-;
DE AltName: Full=P119;
DE AltName: Full=Retropepsin;
DE Contains:
DE RecName: Full=Reverse transcriptase/ribonuclease H;
DE Short=RT;
DE EC=2.7.7.49;
DE EC=2.7.7.7;
DE EC=3.1.26.13;
DE AltName: Full=Exoribonuclease H;
DE EC=3.1.13.2;
DE AltName: Full=P72;
DE Contains:
DE RecName: Full=Integrase;
DE Short=IN;
DE EC=2.7.7.- {ECO:0000250|UniProtKB:P04585};
DE EC=3.1.-.- {ECO:0000250|UniProtKB:P04585};
GN Name=gag-pol;
OS Jembrana disease virus (JDV).
OC Viruses; Riboviria; Pararnavirae; Artverviricota; Revtraviricetes;
OC Ortervirales; Retroviridae; Orthoretrovirinae; Lentivirus.
OX NCBI_TaxID=36370;
OH NCBI_TaxID=9906; Bos javanicus (Wild banteng).
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC RNA].
RC STRAIN=Tabanan/87;
RX PubMed=9049370; DOI=10.1099/0022-1317-76-7-1637;
RA Chadwick B.J., Coelen R.J., Wilcox G.E., Sammels L.M., Kertayadnya G.;
RT "Nucleotide sequence analysis of Jembrana disease virus: a bovine
RT lentivirus associated with an acute disease syndrome.";
RL J. Gen. Virol. 76:1637-1650(1995).
RN [2]
RP NUCLEOTIDE SEQUENCE [GENOMIC RNA] OF 562-760.
RC STRAIN=Tabanan/87;
RX PubMed=7844531; DOI=10.1099/0022-1317-76-1-189;
RA Chadwick B.J., Coelen R.J., Sammels L.M., Kertayadnya G., Wilcox G.E.;
RT "Genomic sequence analysis identifies Jembrana disease virus as a new
RT bovine lentivirus.";
RL J. Gen. Virol. 76:189-192(1995).
CC -!- FUNCTION: Matrix protein p16 forms the outer shell of the core of the
CC virus, lining the inner surface of the viral membrane. {ECO:0000250}.
CC -!- FUNCTION: Capsid protein p26 forms the conical core of the virus that
CC encapsulates the genomic RNA-nucleocapsid complex. {ECO:0000250}.
CC -!- FUNCTION: The aspartyl protease mediates proteolytic cleavages of Gag
CC and Gag-Pol polyproteins during or shortly after the release of the
CC virion from the plasma membrane. Cleavages take place as an ordered,
CC step-wise cascade to yield mature proteins. This process is called
CC maturation. Displays maximal activity during the budding process just
CC prior to particle release from the cell. {ECO:0000255|PROSITE-
CC ProRule:PRU00275}.
CC -!- FUNCTION: Reverse transcriptase/ribonuclease H (RT) is a
CC multifunctional enzyme that converts the viral RNA genome into dsDNA in
CC the cytoplasm, shortly after virus entry into the cell. This enzyme
CC displays a DNA polymerase activity that can copy either DNA or RNA
CC templates, and a ribonuclease H (RNase H) activity that cleaves the RNA
CC strand of RNA-DNA heteroduplexes in a partially processive 3' to 5'
CC endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires
CC many steps. A tRNA binds to the primer-binding site (PBS) situated at
CC the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to
CC perform a short round of RNA-dependent minus-strand DNA synthesis. The
CC reading proceeds through the U5 region and ends after the repeated (R)
CC region which is present at both ends of viral RNA. The portion of the
CC RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA
CC product attached to the tRNA primer. This ssDNA/tRNA hybridizes with
CC the identical R region situated at the 3' end of viral RNA. This
CC template exchange, known as minus-strand DNA strong stop transfer, can
CC be either intra- or intermolecular. RT uses the 3' end of this newly
CC synthesized short ssDNA to perform the RNA-dependent minus-strand DNA
CC synthesis of the whole template. RNase H digests the RNA template
CC except for a polypurine tract (PPT) situated at the 5'-end of the
CC genome. It is not clear if both polymerase and RNase H activities are
CC simultaneous. RNase H probably can proceed both in a polymerase-
CC dependent (RNA cut into small fragments by the same RT performing DNA
CC synthesis) and a polymerase-independent mode (cleavage of remaining RNA
CC fragments by free RTs). Secondly, RT performs DNA-directed plus-strand
CC DNA synthesis using the PPT that has not been removed by RNase H as
CC primer. PPT and tRNA primers are then removed by RNase H. The 3' and 5'
CC ssDNA PBS regions hybridize to form a circular dsDNA intermediate.
CC Strand displacement synthesis by RT to the PBS and PPT ends produces a
CC blunt ended, linear dsDNA copy of the viral genome that includes long
CC terminal repeats (LTRs) at both ends (By similarity). {ECO:0000250}.
CC -!- FUNCTION: Integrase catalyzes viral DNA integration into the host
CC chromosome, by performing a series of DNA cutting and joining
CC reactions. This enzyme activity takes place after virion entry into a
CC cell and reverse transcription of the RNA genome in dsDNA (By
CC similarity). {ECO:0000250}.
CC -!- CATALYTIC ACTIVITY:
CC Reaction=a 2'-deoxyribonucleoside 5'-triphosphate + DNA(n) =
CC diphosphate + DNA(n+1); Xref=Rhea:RHEA:22508, Rhea:RHEA-COMP:17339,
CC Rhea:RHEA-COMP:17340, ChEBI:CHEBI:33019, ChEBI:CHEBI:61560,
CC ChEBI:CHEBI:173112; EC=2.7.7.49; Evidence={ECO:0000255|PROSITE-
CC ProRule:PRU00405};
CC -!- CATALYTIC ACTIVITY:
CC Reaction=a 2'-deoxyribonucleoside 5'-triphosphate + DNA(n) =
CC diphosphate + DNA(n+1); Xref=Rhea:RHEA:22508, Rhea:RHEA-COMP:17339,
CC Rhea:RHEA-COMP:17340, ChEBI:CHEBI:33019, ChEBI:CHEBI:61560,
CC ChEBI:CHEBI:173112; EC=2.7.7.7; Evidence={ECO:0000255|PROSITE-
CC ProRule:PRU00405};
CC -!- CATALYTIC ACTIVITY:
CC Reaction=Endohydrolysis of RNA in RNA/DNA hybrids. Three different
CC cleavage modes: 1. sequence-specific internal cleavage of RNA. Human
CC immunodeficiency virus type 1 and Moloney murine leukemia virus
CC enzymes prefer to cleave the RNA strand one nucleotide away from the
CC RNA-DNA junction. 2. RNA 5'-end directed cleavage 13-19 nucleotides
CC from the RNA end. 3. DNA 3'-end directed cleavage 15-20 nucleotides
CC away from the primer terminus.; EC=3.1.26.13;
CC -!- CATALYTIC ACTIVITY:
CC Reaction=3'-end directed exonucleolytic cleavage of viral RNA-DNA
CC hybrid.; EC=3.1.13.2;
CC -!- SUBCELLULAR LOCATION: [Matrix protein p16]: Virion {ECO:0000305}.
CC -!- SUBCELLULAR LOCATION: [Capsid protein p26]: Virion {ECO:0000305}.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Ribosomal frameshifting; Named isoforms=2;
CC Comment=This strategy of translation probably allows the virus to
CC modulate the quantity of each viral protein.;
CC Name=Gag-Pol polyprotein;
CC IsoId=Q82851-1; Sequence=Displayed;
CC Name=Gag polyprotein;
CC IsoId=Q82850-1; Sequence=External;
CC -!- PTM: Specific enzymatic cleavages by the viral protease yield mature
CC proteins. The protease is released by autocatalytic cleavage. The
CC polyprotein is cleaved during and after budding, this process is termed
CC maturation (By similarity). {ECO:0000250}.
CC -!- MISCELLANEOUS: Gag proteins are synthesized on both gag and gag-pol
CC polyproteins. Gag polyprotein (AC Q82850) is produced from conventional
CC translation of the gag ORF. Gag-Pol polyprotein is generated by a -1
CC ribosomal frameshift occurring at the gag-pol genes boundary. This
CC strategy of translation probably allows the virus to modulate the
CC quantity of each viral protein (By similarity). {ECO:0000250}.
CC -!- MISCELLANEOUS: The reverse transcriptase is an error-prone enzyme that
CC lacks a proof-reading function. High mutations rate is a direct
CC consequence of this characteristic. RT also displays frequent template
CC switching leading to high recombination rate. Recombination mostly
CC occurs between homologous regions of the two copackaged RNA genomes. If
CC these two RNA molecules derive from different viral strains, reverse
CC transcription will give rise to highly recombinated proviral DNAs (By
CC similarity). {ECO:0000250}.
CC -!- MISCELLANEOUS: [Isoform Gag-Pol polyprotein]: Produced by ribosomal
CC frameshifting at the gag-pol genes boundary.
CC ---------------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC ---------------------------------------------------------------------------
DR EMBL; U21603; AAA64389.1; -; Genomic_RNA.
DR EMBL; L32870; AAA64521.1; -; Genomic_RNA.
DR SMR; Q82851; -.
DR PRIDE; Q82851; -.
DR Proteomes; UP000242339; Genome.
DR Proteomes; UP000246436; Genome.
DR GO; GO:0019013; C:viral nucleocapsid; IEA:UniProtKB-KW.
DR GO; GO:0004190; F:aspartic-type endopeptidase activity; IEA:UniProtKB-KW.
DR GO; GO:0003677; F:DNA binding; IEA:UniProtKB-KW.
DR GO; GO:0003887; F:DNA-directed DNA polymerase activity; IEA:UniProtKB-KW.
DR GO; GO:0004533; F:exoribonuclease H activity; IEA:UniProtKB-EC.
DR GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
DR GO; GO:0003964; F:RNA-directed DNA polymerase activity; IEA:UniProtKB-KW.
DR GO; GO:0004523; F:RNA-DNA hybrid ribonuclease activity; IEA:InterPro.
DR GO; GO:0039660; F:structural constituent of virion; IEA:UniProtKB-KW.
DR GO; GO:0008270; F:zinc ion binding; IEA:InterPro.
DR GO; GO:0015074; P:DNA integration; IEA:UniProtKB-KW.
DR GO; GO:0006310; P:DNA recombination; IEA:UniProtKB-KW.
DR GO; GO:0075713; P:establishment of integrated proviral latency; IEA:UniProtKB-KW.
DR GO; GO:0006508; P:proteolysis; IEA:UniProtKB-KW.
DR GO; GO:0046718; P:viral entry into host cell; IEA:UniProtKB-KW.
DR GO; GO:0044826; P:viral genome integration into host DNA; IEA:UniProtKB-KW.
DR Gene3D; 1.10.10.200; -; 1.
DR Gene3D; 1.10.1200.30; -; 1.
DR Gene3D; 1.10.150.90; -; 1.
DR Gene3D; 1.10.375.10; -; 1.
DR Gene3D; 2.30.30.10; -; 1.
DR Gene3D; 2.40.70.10; -; 1.
DR Gene3D; 3.30.420.10; -; 2.
DR Gene3D; 3.30.70.270; -; 3.
DR InterPro; IPR001969; Aspartic_peptidase_AS.
DR InterPro; IPR043502; DNA/RNA_pol_sf.
DR InterPro; IPR045345; Gag_p24_C.
DR InterPro; IPR017856; Integrase-like_N.
DR InterPro; IPR036862; Integrase_C_dom_sf_retrovir.
DR InterPro; IPR001037; Integrase_C_retrovir.
DR InterPro; IPR001584; Integrase_cat-core.
DR InterPro; IPR003308; Integrase_Zn-bd_dom_N.
DR InterPro; IPR012344; Matrix_HIV/RSV_N.
DR InterPro; IPR001995; Peptidase_A2_cat.
DR InterPro; IPR021109; Peptidase_aspartic_dom_sf.
DR InterPro; IPR018061; Retropepsins.
DR InterPro; IPR008916; Retrov_capsid_C.
DR InterPro; IPR008919; Retrov_capsid_N.
DR InterPro; IPR043128; Rev_trsase/Diguanyl_cyclase.
DR InterPro; IPR012337; RNaseH-like_sf.
DR InterPro; IPR002156; RNaseH_domain.
DR InterPro; IPR036397; RNaseH_sf.
DR InterPro; IPR000477; RT_dom.
DR InterPro; IPR010661; RVT_thumb.
DR InterPro; IPR001878; Znf_CCHC.
DR InterPro; IPR036875; Znf_CCHC_sf.
DR Pfam; PF19317; Gag_p24_C; 1.
DR Pfam; PF00552; IN_DBD_C; 1.
DR Pfam; PF02022; Integrase_Zn; 1.
DR Pfam; PF00075; RNase_H; 1.
DR Pfam; PF00665; rve; 1.
DR Pfam; PF00077; RVP; 1.
DR Pfam; PF00078; RVT_1; 1.
DR Pfam; PF06817; RVT_thumb; 1.
DR Pfam; PF00098; zf-CCHC; 2.
DR SMART; SM00343; ZnF_C2HC; 2.
DR SUPFAM; SSF46919; SSF46919; 1.
DR SUPFAM; SSF47943; SSF47943; 1.
DR SUPFAM; SSF50122; SSF50122; 1.
DR SUPFAM; SSF50630; SSF50630; 1.
DR SUPFAM; SSF53098; SSF53098; 2.
DR SUPFAM; SSF56672; SSF56672; 1.
DR SUPFAM; SSF57756; SSF57756; 1.
DR PROSITE; PS50175; ASP_PROT_RETROV; 1.
DR PROSITE; PS00141; ASP_PROTEASE; 1.
DR PROSITE; PS50994; INTEGRASE; 1.
DR PROSITE; PS51027; INTEGRASE_DBD; 1.
DR PROSITE; PS50879; RNASE_H_1; 1.
DR PROSITE; PS50878; RT_POL; 1.
DR PROSITE; PS50158; ZF_CCHC; 2.
DR PROSITE; PS50876; ZF_INTEGRASE; 1.
PE 3: Inferred from homology;
KW Aspartyl protease; Capsid protein; Coiled coil; DNA integration;
KW DNA recombination; DNA-binding; DNA-directed DNA polymerase; Endonuclease;
KW Hydrolase; Magnesium; Metal-binding; Multifunctional enzyme; Nuclease;
KW Nucleotidyltransferase; Protease; Reference proteome; Repeat;
KW Ribosomal frameshifting; RNA-binding; RNA-directed DNA polymerase;
KW Transferase; Viral genome integration; Viral matrix protein;
KW Viral nucleoprotein; Viral release from host cell; Virion;
KW Virion maturation; Virus entry into host cell; Zinc; Zinc-finger.
FT CHAIN 1..1432
FT /note="Gag-Pol polyprotein"
FT /id="PRO_0000272353"
FT CHAIN 1..125
FT /note="Matrix protein p16"
FT /evidence="ECO:0000255"
FT /id="PRO_0000272354"
FT CHAIN 126..351
FT /note="Capsid protein p26"
FT /evidence="ECO:0000255"
FT /id="PRO_0000272355"
FT CHAIN 352..432
FT /note="Transframe peptide"
FT /evidence="ECO:0000255"
FT /id="PRO_0000272356"
FT CHAIN 433..522
FT /note="Protease"
FT /evidence="ECO:0000255"
FT /id="PRO_0000272357"
FT CHAIN 523..1151
FT /note="Reverse transcriptase/ribonuclease H"
FT /evidence="ECO:0000255"
FT /id="PRO_0000272358"
FT CHAIN 1152..1432
FT /note="Integrase"
FT /evidence="ECO:0000255"
FT /id="PRO_0000272359"
FT DOMAIN 452..525
FT /note="Peptidase A2"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00275"
FT DOMAIN 579..766
FT /note="Reverse transcriptase"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00405"
FT DOMAIN 959..1079
FT /note="RNase H type-1"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00408"
FT DOMAIN 1206..1358
FT /note="Integrase catalytic"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00457"
FT ZN_FING 368..385
FT /note="CCHC-type 1"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00047"
FT ZN_FING 386..403
FT /note="CCHC-type 2"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00047"
FT ZN_FING 1157..1198
FT /note="Integrase-type"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00450"
FT DNA_BIND 1376..1422
FT /note="Integrase-type"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00506"
FT COILED 815..843
FT /evidence="ECO:0000255"
FT ACT_SITE 457
FT /note="For protease activity; shared with dimeric partner"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU10094"
FT BINDING 645
FT /ligand="Mg(2+)"
FT /ligand_id="ChEBI:CHEBI:18420"
FT /ligand_label="1"
FT /ligand_note="catalytic"
FT /evidence="ECO:0000250"
FT BINDING 720
FT /ligand="Mg(2+)"
FT /ligand_id="ChEBI:CHEBI:18420"
FT /ligand_label="1"
FT /ligand_note="catalytic"
FT /evidence="ECO:0000250"
FT BINDING 721
FT /ligand="Mg(2+)"
FT /ligand_id="ChEBI:CHEBI:18420"
FT /ligand_label="1"
FT /ligand_note="catalytic"
FT /evidence="ECO:0000250"
FT BINDING 968
FT /ligand="Mg(2+)"
FT /ligand_id="ChEBI:CHEBI:18420"
FT /ligand_label="2"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00408"
FT BINDING 999
FT /ligand="Mg(2+)"
FT /ligand_id="ChEBI:CHEBI:18420"
FT /ligand_label="2"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00408"
FT BINDING 1019
FT /ligand="Mg(2+)"
FT /ligand_id="ChEBI:CHEBI:18420"
FT /ligand_label="2"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00408"
FT BINDING 1071
FT /ligand="Mg(2+)"
FT /ligand_id="ChEBI:CHEBI:18420"
FT /ligand_label="2"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00408"
FT BINDING 1166
FT /ligand="Zn(2+)"
FT /ligand_id="ChEBI:CHEBI:29105"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00450"
FT BINDING 1170
FT /ligand="Zn(2+)"
FT /ligand_id="ChEBI:CHEBI:29105"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00450"
FT BINDING 1194
FT /ligand="Zn(2+)"
FT /ligand_id="ChEBI:CHEBI:29105"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00450"
FT BINDING 1197
FT /ligand="Zn(2+)"
FT /ligand_id="ChEBI:CHEBI:29105"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00450"
FT BINDING 1219
FT /ligand="Mg(2+)"
FT /ligand_id="ChEBI:CHEBI:18420"
FT /ligand_label="3"
FT /ligand_note="catalytic"
FT /evidence="ECO:0000250"
FT BINDING 1271
FT /ligand="Mg(2+)"
FT /ligand_id="ChEBI:CHEBI:18420"
FT /ligand_label="3"
FT /ligand_note="catalytic"
FT /evidence="ECO:0000250"
FT SITE 125..126
FT /note="Cleavage; by viral protease"
FT /evidence="ECO:0000255"
FT SITE 351..352
FT /note="Cleavage; by viral protease"
FT /evidence="ECO:0000255"
FT SITE 432..433
FT /note="Cleavage; by viral protease"
FT /evidence="ECO:0000255"
FT SITE 522..523
FT /note="Cleavage; by viral protease"
FT /evidence="ECO:0000255"
FT SITE 1151..1152
FT /note="Cleavage; by viral protease"
FT /evidence="ECO:0000255"
SQ SEQUENCE 1432 AA; 163421 MW; 06FF2F3E0E14EED4 CRC64;
MKLSKLEKAL KKVRVTPQRD DTYTIGNVLW AIRMCRLMGL DCCIDEATAA EVAILIGRFQ
SLDLQDSPLK GKDEKAILTT LKVLWSLLAG HHPENSDMAE KYWEAWTIRE RESQKEEEGE
ITSIYPQLRK NFPAVSTSDG SPRYDPDLTK QLKIWADATE KHGVDHHAVN ILGVITANLT
QSEIRLLLQS TPQWRLDIQL IESKLNAREH AHRVWKESHP EAPKTDEIIG KGLTAAEQAT
LTTQECRDTY RQWVLEAALE VAQGKHDRPG PINIHQGPKE PYPEFVNKLV TALEGMAAPE
TTKQYLLDHL SVDHANEDCR AVLLPLGPSA PMERKLEACR AVGSSKQKMQ FLAEAFAAIN
VKGDGEVQRC YGCGKPGHIR RDCKNQKCFK CGKPGHLQRN CKSKNREALL CPFWAEERIP
SGEDFCDPVC SPVGIRLNRQ PFIKIFLGGR WVRALIDTGA DEVVLKDIHW DRIKGVPAAS
VVQVGVTGRN IARRKSNVEW RFKNRYGIVD VLFSNTPVNL LGRSVLQSIV TKFTLAAHTK
QIQPLPVKLH GPGPRVPQWP LTLEKYKALK EIVEELLKDG KISRTPWDNP FNTPVFVIKK
KGGSKWRMLM DFRALNKVTN KGQEFQIGLP YPPGIQQCEH ITAIDIKDAY FTIPLDENFR
QYTAFSVVPV NREGPLERYH WNVLPQGWVC SPAIYQTTTQ EIIAEIKDRF PDIVLYQYMD
DLLIGSDRPD HKRVVSEIRE ELGAYGFKTP EEKIQEEQVQ WLGYELTPKR WRFQPRQIKI
KKVVTVNELQ QMIGNCVWVQ PEVKIPLSPL SDLLKGKTDL KDKIKLTEEA IQCLETVNKR
LKDPEWKERI KEGTELVVKI QLIPEGVVYD LLQDGNPIWG GVKGWDYNHA NKIKKMLSIM
KKLSRIVMIM TGREVSFLIP GDSEDWESAL QRINTLTEIP EVKFYKHACR WTSVCGPVIE
RYPTYYTDGG KKGSKAAAAY WREGKIRREV FPGTNQQAEL KAVLMALQDG PAKMNIITDS
RYAFEGMREE PETWGREGLW KEIGEELRRK EYVGVSWVPG HKGIGGNTEV DQEVQKALQG
PITVSLPQEI LLEAGETKLV KTGIFWEGLR PCKLRPEEGL KLKGSLIDEE LQLEITNTQN
SRVGIRQGQT IGTCFIEAIP QAIEEHEKWH TTAEILAREF QLPRRVAREI VHRCQACKRT
VSCPRRGTNP RERFLWQMDN THLEGKIIWV AVETNSGLIE ARVIPEESAQ SIVFCILMLV
YRYTVYHIHS DNGPCFIAQK VEALCKYLKI TKTTGIPYNP QAQAIVERTH RDIKDKIAAF
REDCETVEAA LSLTLVALNK KRGGIGGHTP YEIYLESEYN KYQEQQNHYN NFKTEKWAYV
RDKRKVWKGP YKVLWDGEGA AVVEENAMPT LYPHRHMRFI PPPNTDTQDG NL