RECC_ECOLI
ID RECC_ECOLI Reviewed; 1122 AA.
AC P07648; Q2MA15; Q9RNX9;
DT 01-APR-1988, integrated into UniProtKB/Swiss-Prot.
DT 01-APR-1988, sequence version 1.
DT 03-AUG-2022, entry version 176.
DE RecName: Full=RecBCD enzyme subunit RecC {ECO:0000255|HAMAP-Rule:MF_01486};
DE EC=3.1.11.5 {ECO:0000255|HAMAP-Rule:MF_01486};
DE AltName: Full=Exodeoxyribonuclease V 125 kDa polypeptide;
DE AltName: Full=Exodeoxyribonuclease V gamma chain;
DE AltName: Full=Exonuclease V subunit RecC {ECO:0000255|HAMAP-Rule:MF_01486};
DE Short=ExoV subunit RecC {ECO:0000255|HAMAP-Rule:MF_01486};
GN Name=recC {ECO:0000255|HAMAP-Rule:MF_01486};
GN OrderedLocusNames=b2822, JW2790;
OS Escherichia coli (strain K12).
OC Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales;
OC Enterobacteriaceae; Escherichia.
OX NCBI_TaxID=83333;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND PROTEIN SEQUENCE OF 1-12.
RX PubMed=3520484; DOI=10.1093/nar/14.11.4437;
RA Finch P.W., Wilson R.E., Brown K., Hickson I.D., Tomkinson A.E.,
RA Emmerson P.T.;
RT "Complete nucleotide sequence of the Escherichia coli recC gene and of the
RT thyA-recC intergenic region.";
RL Nucleic Acids Res. 14:4437-4451(1986).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC STRAIN=K12 / MG1655 / ATCC 47076;
RX PubMed=9278503; DOI=10.1126/science.277.5331.1453;
RA Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V.,
RA Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F.,
RA Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B.,
RA Shao Y.;
RT "The complete genome sequence of Escherichia coli K-12.";
RL Science 277:1453-1462(1997).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC STRAIN=K12 / W3110 / ATCC 27325 / DSM 5911;
RX PubMed=16738553; DOI=10.1038/msb4100049;
RA Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S.,
RA Ohtsubo E., Baba T., Wanner B.L., Mori H., Horiuchi T.;
RT "Highly accurate genome sequences of Escherichia coli K-12 strains MG1655
RT and W3110.";
RL Mol. Syst. Biol. 2:E1-E5(2006).
RN [4]
RP VARIANT RECC-1004 647-GLN--LEU-655, AND FUNCTION IN RECOGNITION OF CHI.
RX PubMed=10884344; DOI=10.1006/jmbi.2000.3861;
RA Arnold D.A., Handa N., Kobayashi I., Kowalczykowski S.C.;
RT "A novel, 11 nucleotide variant of chi, chi*: one of a class of sequences
RT defining the Escherichia coli recombination hotspot chi.";
RL J. Mol. Biol. 300:469-479(2000).
RN [5]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1114-1122.
RX PubMed=3534791; DOI=10.1093/nar/14.19.7695;
RA Finch P.W., Wilson R.E., Brown K., Hickson I.D., Emmerson P.T.;
RT "Complete nucleotide sequence of the Escherichia coli ptr gene encoding
RT protease III.";
RL Nucleic Acids Res. 14:7695-7703(1986).
RN [6]
RP FUNCTION IN DEGRADATION OF LAMBDA VIRUS DNA, AND DISRUPTION PHENOTYPE.
RC STRAIN=K12;
RX PubMed=4562392; DOI=10.1128/jb.112.1.161-169.1972;
RA Simmon V.F., Lederberg S.;
RT "Degradation of bacteriophage lambda deoxyribonucleic acid after
RT restriction by Escherichia coli K-12.";
RL J. Bacteriol. 112:161-169(1972).
RN [7]
RP FUNCTION AS AN ENDO- AND EXODEOXYRIBONUCLEASE, ATP-DEPENDENCE, AND SUBUNIT.
RC STRAIN=K12;
RX PubMed=4552016; DOI=10.1016/s0021-9258(19)45550-6;
RA Goldmark P.J., Linn S.;
RT "Purification and properties of the recBC DNase of Escherichia coli K-12.";
RL J. Biol. Chem. 247:1849-1860(1972).
RN [8]
RP FUNCTION, SUBSTRATES, AND PROCESSIVITY.
RX PubMed=4268693; DOI=10.1016/s0021-9258(19)43644-2;
RA Karu A.E., MacKay V., Goldmark P.J., Linn S.;
RT "The recBC deoxyribonuclease of Escherichia coli K-12. Substrate
RT specificity and reaction intermediates.";
RL J. Biol. Chem. 248:4874-4884(1973).
RN [9]
RP ACTIVITY REGULATION BY LAMBDA GAM PROTEIN (MICROBIAL INFECTION).
RX PubMed=4275917; DOI=10.1073/pnas.70.8.2215;
RA Sakaki Y., Karu A.E., Linn S., Echols H.;
RT "Purification and properties of the gamma-protein specified by
RT bacteriophage lambda: an inhibitor of the host RecBC recombination
RT enzyme.";
RL Proc. Natl. Acad. Sci. U.S.A. 70:2215-2219(1973).
RN [10]
RP FUNCTION IN DEGRADATION OF VIRUS DNA, AND DISRUPTION PHENOTYPE.
RX PubMed=123277; DOI=10.1128/jvi.15.4.861-871.1975;
RA Benzinger R., Enquist L.W., Skalka A.;
RT "Transfection of Escherichia coli spheroplasts. V. Activity of recBC
RT nuclease in rec+ and rec minus spheroplasts measured with different forms
RT of bacteriophage DNA.";
RL J. Virol. 15:861-871(1975).
RN [11]
RP DISRUPTION PHENOTYPE.
RX PubMed=6389498; DOI=10.1128/jb.160.2.788-791.1984;
RA Chaudhury A.M., Smith G.R.;
RT "Escherichia coli recBC deletion mutants.";
RL J. Bacteriol. 160:788-791(1984).
RN [12]
RP OPERON, AND SUBUNIT.
RX PubMed=3526335; DOI=10.1073/pnas.83.15.5558;
RA Amundsen S.K., Taylor A.F., Chaudhury A.M., Smith G.R.;
RT "recD: the gene for an essential third subunit of exonuclease V.";
RL Proc. Natl. Acad. Sci. U.S.A. 83:5558-5562(1986).
RN [13]
RP ACTIVITY REGULATION BY LAMBDA GAM PROTEIN (MICROBIAL INFECTION), AND
RP INTERACTION WITH LAMBDA GAMS (MICROBIAL INFECTION).
RX PubMed=1653221; DOI=10.1128/jb.173.18.5808-5821.1991;
RA Murphy K.C.;
RT "Lambda Gam protein inhibits the helicase and chi-stimulated recombination
RT activities of Escherichia coli RecBCD enzyme.";
RL J. Bacteriol. 173:5808-5821(1991).
RN [14]
RP FUNCTION, AND ACTIVITY REGULATION.
RX PubMed=1535156; DOI=10.1073/pnas.89.12.5226;
RA Taylor A.F., Smith G.R.;
RT "RecBCD enzyme is altered upon cutting DNA at a chi recombination
RT hotspot.";
RL Proc. Natl. Acad. Sci. U.S.A. 89:5226-5230(1992).
RN [15]
RP FUNCTION AS AN EXONUCLEASE; HELICASE AND ATPASE, AND SUBUNIT.
RX PubMed=1618858; DOI=10.1016/s0021-9258(18)42249-1;
RA Masterson C., Boehmer P.E., McDonald F., Chaudhuri S., Hickson I.D.,
RA Emmerson P.T.;
RT "Reconstitution of the activities of the RecBCD holoenzyme of Escherichia
RT coli from the purified subunits.";
RL J. Biol. Chem. 267:13564-13572(1992).
RN [16]
RP FUNCTION IN HOMOLOGOUS RECOMBINATION.
RX PubMed=7608206; DOI=10.1074/jbc.270.27.16360;
RA Dixon D.A., Kowalczykowski S.C.;
RT "Role of the Escherichia coli recombination hotspot, chi, in RecABCD-
RT dependent homologous pairing.";
RL J. Biol. Chem. 270:16360-16370(1995).
RN [17]
RP FUNCTION IN RECA-LOADING.
RX PubMed=9230304; DOI=10.1016/s0092-8674(00)80315-3;
RA Anderson D.G., Kowalczykowski S.C.;
RT "The translocating RecBCD enzyme stimulates recombination by directing RecA
RT protein onto ssDNA in a chi-regulated manner.";
RL Cell 90:77-86(1997).
RN [18]
RP FUNCTION IN RECOGNITION OF CHI.
RX PubMed=9192629; DOI=10.1073/pnas.94.13.6706;
RA Bianco P.R., Kowalczykowski S.C.;
RT "The recombination hotspot Chi is recognized by the translocating RecBCD
RT enzyme as the single strand of DNA containing the sequence 5'-GCTGGTGG-
RT 3'.";
RL Proc. Natl. Acad. Sci. U.S.A. 94:6706-6711(1997).
RN [19]
RP FUNCTION IN PROCESSIVITY.
RX PubMed=9790841; DOI=10.1006/jmbi.1998.2127;
RA Yu M., Souaya J., Julin D.A.;
RT "Identification of the nuclease active site in the multifunctional RecBCD
RT enzyme by creation of a chimeric enzyme.";
RL J. Mol. Biol. 283:797-808(1998).
RN [20]
RP FUNCTION IN PROCESSIVITY, AND INTERACTION WITH RECB.
RX PubMed=9448271; DOI=10.1073/pnas.95.3.981;
RA Yu M., Souaya J., Julin D.A.;
RT "The 30-kDa C-terminal domain of the RecB protein is critical for the
RT nuclease activity, but not the helicase activity, of the RecBCD enzyme from
RT Escherichia coli.";
RL Proc. Natl. Acad. Sci. U.S.A. 95:981-986(1998).
RN [21]
RP FUNCTION, AND ACTIVITY REGULATION.
RX PubMed=10197988; DOI=10.1101/gad.13.7.890;
RA Taylor A.F., Smith G.R.;
RT "Regulation of homologous recombination: Chi inactivates RecBCD enzyme by
RT disassembly of the three subunits.";
RL Genes Dev. 13:890-900(1999).
RN [22]
RP FUNCTION AS A BIPOLAR HELICASE.
RX PubMed=12815437; DOI=10.1038/nature01674;
RA Taylor A.F., Smith G.R.;
RT "RecBCD enzyme is a DNA helicase with fast and slow motors of opposite
RT polarity.";
RL Nature 423:889-893(2003).
RN [23]
RP FUNCTION AS A BIPOLAR HELICASE.
RX PubMed=12815438; DOI=10.1038/nature01673;
RA Dillingham M.S., Spies M., Kowalczykowski S.C.;
RT "RecBCD enzyme is a bipolar DNA helicase.";
RL Nature 423:893-897(2003).
RN [24]
RP FUNCTION.
RX PubMed=16041061; DOI=10.1074/jbc.m505520200;
RA Dillingham M.S., Webb M.R., Kowalczykowski S.C.;
RT "Bipolar DNA translocation contributes to highly processive DNA unwinding
RT by RecBCD enzyme.";
RL J. Biol. Chem. 280:37069-37077(2005).
RN [25]
RP FUNCTION.
RX PubMed=18079176; DOI=10.1101/gad.1605807;
RA Amundsen S.K., Taylor A.F., Reddy M., Smith G.R.;
RT "Intersubunit signaling in RecBCD enzyme, a complex protein machine
RT regulated by Chi hot spots.";
RL Genes Dev. 21:3296-3307(2007).
RN [26]
RP FUNCTION IN DUAL DIRECTION TRANSLOCATION.
RX PubMed=20852646; DOI=10.1038/nsmb.1901;
RA Wu C.G., Bradford C., Lohman T.M.;
RT "Escherichia coli RecBC helicase has two translocase activities controlled
RT by a single ATPase motor.";
RL Nat. Struct. Mol. Biol. 17:1210-1217(2010).
RN [27]
RP INTERACTION WITH CAS1.
RC STRAIN=K12;
RX PubMed=21219465; DOI=10.1111/j.1365-2958.2010.07465.x;
RA Babu M., Beloglazova N., Flick R., Graham C., Skarina T., Nocek B.,
RA Gagarinova A., Pogoutse O., Brown G., Binkowski A., Phanse S.,
RA Joachimiak A., Koonin E.V., Savchenko A., Emili A., Greenblatt J.,
RA Edwards A.M., Yakunin A.F.;
RT "A dual function of the CRISPR-Cas system in bacterial antivirus immunity
RT and DNA repair.";
RL Mol. Microbiol. 79:484-502(2011).
RN [28]
RP DNA-BINDING, AND MUTAGENESIS OF GLN-38; LEU-64; TRP-70; ASP-133; LEU-134;
RP ASP-136; GLN-137; ARG-142; ARG-186 AND ASP-705.
RX PubMed=22603794; DOI=10.1073/pnas.1206076109;
RA Handa N., Yang L., Dillingham M.S., Kobayashi I., Wigley D.B.,
RA Kowalczykowski S.C.;
RT "Molecular determinants responsible for recognition of the single-stranded
RT DNA regulatory sequence, chi, by RecBCD enzyme.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:8901-8906(2012).
RN [29]
RP FUNCTION, ENZYME RATE, AND ENZYME STATE SWITCHING.
RX PubMed=23851395; DOI=10.1038/nature12333;
RA Liu B., Baskin R.J., Kowalczykowski S.C.;
RT "DNA unwinding heterogeneity by RecBCD results from static molecules able
RT to equilibrate.";
RL Nature 500:482-485(2013).
RN [30]
RP FUNCTION, AND MODEL OF DOMAIN MOVEMENT.
RX PubMed=25073102; DOI=10.1016/j.jmb.2014.07.017;
RA Taylor A.F., Amundsen S.K., Guttman M., Lee K.K., Luo J., Ranish J.,
RA Smith G.R.;
RT "Control of RecBCD enzyme activity by DNA binding- and Chi hotspot-
RT dependent conformational changes.";
RL J. Mol. Biol. 426:3479-3499(2014).
RN [31]
RP DISRUPTION PHENOTYPE.
RC STRAIN=K12 / BW25141;
RX PubMed=33157039; DOI=10.1016/j.cell.2020.09.065;
RA Millman A., Bernheim A., Stokar-Avihail A., Fedorenko T., Voichek M.,
RA Leavitt A., Oppenheimer-Shaanan Y., Sorek R.;
RT "Bacterial Retrons Function In Anti-Phage Defense.";
RL Cell 183:1551-1561(2020).
RN [32] {ECO:0007744|PDB:1W36}
RP X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) IN COMPLEX WITH DNA, AND SUBUNIT.
RX PubMed=15538360; DOI=10.1038/nature02988;
RA Singleton M.R., Dillingham M.S., Gaudier M., Kowalczykowski S.C.,
RA Wigley D.B.;
RT "Crystal structure of RecBCD enzyme reveals a machine for processing DNA
RT breaks.";
RL Nature 432:187-193(2004).
RN [33] {ECO:0007744|PDB:3K70}
RP X-RAY CRYSTALLOGRAPHY (3.59 ANGSTROMS) IN COMPLEX WITH DNA, AND SUBUNIT.
RX PubMed=18668125; DOI=10.1038/emboj.2008.144;
RA Saikrishnan K., Griffiths S.P., Cook N., Court R., Wigley D.B.;
RT "DNA binding to RecD: role of the 1B domain in SF1B helicase activity.";
RL EMBO J. 27:2222-2229(2008).
RN [34] {ECO:0007744|PDB:5LD2}
RP STRUCTURE BY ELECTRON MICROSCOPY (3.83 ANGSTROMS) OF RECBCD IN COMPLEX WITH
RP FORKED DNA SUBSTRATE, DOMAIN, AND DNA-BINDING.
RX PubMed=27644322; DOI=10.7554/elife.18227;
RA Wilkinson M., Chaban Y., Wigley D.B.;
RT "Mechanism for nuclease regulation in RecBCD.";
RL Elife 5:0-0(2016).
RN [35] {ECO:0007744|PDB:5MBV}
RP STRUCTURE BY ELECTRON MICROSCOPY (3.80 ANGSTROMS).
RX PubMed=28009252; DOI=10.7554/elife.22963;
RA Wilkinson M., Troman L., Wan Nur Ismah W.A., Chaban Y., Avison M.B.,
RA Dillingham M.S., Wigley D.B.;
RT "Structural basis for the inhibition of RecBCD by Gam and its synergistic
RT antibacterial effect with quinolones.";
RL Elife 5:0-0(2016).
RN [36]
RP REVIEW.
RX PubMed=19052323; DOI=10.1128/mmbr.00020-08;
RA Dillingham M.S., Kowalczykowski S.C.;
RT "RecBCD enzyme and the repair of double-stranded DNA breaks.";
RL Microbiol. Mol. Biol. Rev. 72:642-671(2008).
RN [37]
RP REVIEW.
RX PubMed=22688812; DOI=10.1128/mmbr.05026-11;
RA Smith G.R.;
RT "How RecBCD enzyme and Chi promote DNA break repair and recombination: a
RT molecular biologist's view.";
RL Microbiol. Mol. Biol. Rev. 76:217-228(2012).
CC -!- FUNCTION: A helicase/nuclease that prepares dsDNA breaks (DSB) for
CC recombinational DNA repair. Binds to DSBs and unwinds DNA via a rapid
CC (>1 kb/second) and highly processive (>30 kb) ATP-dependent
CC bidirectional helicase. Unwinds dsDNA until it encounters a Chi
CC (crossover hotspot instigator, 5'-GCTGGTGG-3') sequence from the 3'
CC direction. Cuts ssDNA a few nucleotides 3' to Chi site, by nicking one
CC strand or switching the strand degraded (depending on the reaction
CC conditions). The properties and activities of the enzyme are changed at
CC Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang which
CC facilitates RecA-binding to the ssDNA for homologous DNA recombination
CC and repair. Holoenzyme degrades any linearized DNA that is unable to
CC undergo homologous recombination (PubMed:4562392, PubMed:4552016,
CC PubMed:123277). In the holoenzyme this subunit almost certainly
CC recognizes the wild-type Chi sequence, when added to isolated RecB
CC increases its ATP-dependent helicase processivity. The RecBC complex
CC requires the RecD subunit for nuclease activity, but can translocate
CC along ssDNA in both directions. {ECO:0000269|PubMed:10197988,
CC ECO:0000269|PubMed:10884344, ECO:0000269|PubMed:123277,
CC ECO:0000269|PubMed:12815437, ECO:0000269|PubMed:12815438,
CC ECO:0000269|PubMed:1535156, ECO:0000269|PubMed:16041061,
CC ECO:0000269|PubMed:1618858, ECO:0000269|PubMed:20852646,
CC ECO:0000269|PubMed:23851395, ECO:0000269|PubMed:4268693,
CC ECO:0000269|PubMed:4552016, ECO:0000269|PubMed:4562392,
CC ECO:0000269|PubMed:7608206, ECO:0000269|PubMed:9192629,
CC ECO:0000269|PubMed:9230304, ECO:0000269|PubMed:9448271,
CC ECO:0000269|PubMed:9790841}.
CC -!- CATALYTIC ACTIVITY:
CC Reaction=Exonucleolytic cleavage (in the presence of ATP) in either
CC 5'- to 3'- or 3'- to 5'-direction to yield 5'-
CC phosphooligonucleotides.; EC=3.1.11.5; Evidence={ECO:0000255|HAMAP-
CC Rule:MF_01486};
CC -!- ACTIVITY REGULATION: After reacting with DNA bearing a Chi site the
CC holoenzyme is disassembled and loses exonuclease activity, DNA
CC unwinding and Chi-directed DNA cleavage; RecB remains complexed with
CC ssDNA, which may prevent holoenzyme reassembly (PubMed:10197988). High
CC levels of Mg(2+) (13 mM MgCl(2+)) or incubation with DNase allow
CC holoenyzme reassembly, suggesting it is DNA bound to RecB that prevents
CC reassembly (PubMed:10197988). {ECO:0000269|PubMed:10197988,
CC ECO:0000269|PubMed:1535156}.
CC -!- ACTIVITY REGULATION: (Microbial infection) RecBCD is inhibited by the
CC lambda virus gam protein (both GamL and GamS isoforms); in vitro a
CC short preincubation prior to adding DNA results in maximal inhibition.
CC {ECO:0000269|PubMed:1653221, ECO:0000269|PubMed:4275917}.
CC -!- SUBUNIT: Heterotrimer of RecB, RecC and RecD. All subunits contribute
CC to DNA-binding. Interacts with YgbT (Cas1) (PubMed:21219465).
CC {ECO:0000255|HAMAP-Rule:MF_01486, ECO:0000269|PubMed:15538360,
CC ECO:0000269|PubMed:1618858, ECO:0000269|PubMed:18668125,
CC ECO:0000269|PubMed:21219465, ECO:0000269|PubMed:3526335,
CC ECO:0000269|PubMed:4552016, ECO:0000269|PubMed:9448271}.
CC -!- SUBUNIT: (Microbial infection) Lambda virus GamS protein interacts with
CC the enzyme without displacing any of the subunits.
CC {ECO:0000269|PubMed:1653221}.
CC -!- DOMAIN: The holoenzyme may undergo conformational shifts upon DNA
CC binding: the nuclease domain of RecB may swing away from the DNA exit
CC tunnel in RecC. When Chi DNA binds to the RecC tunnel, the nuclease
CC domain may then swing back to its original position (that seen in
CC crystal structures), allowing it to nick the DNA 3' of the Chi site and
CC then rotate to load RecA. At high Mg(2+) the nuclease domain may swing
CC back more frequently, explaining differences seen in assays performed
CC at high Mg(2+) (PubMed:25073102). As ssDNA is unwound and fed to the
CC RecD subunit the latter transmits conformational changes through each
CC subunit to activate the RecB nuclease (PubMed:27644322).
CC {ECO:0000269|PubMed:25073102, ECO:0000269|PubMed:27644322}.
CC -!- DISRUPTION PHENOTYPE: Decreased degradation of DNA with free ends that
CC is unable to undergo homologous recombination, which can fortuitously
CC lead to more efficient viral infection (PubMed:123277, PubMed:4562392).
CC Cells are deficient in DNA recombination repair and have increased
CC sensitivity to UV light. The cultures have many inviable cells
CC (PubMed:6389498). Cells can be transformed with retron Ec48-containing
CC plasmids (PubMed:33157039). {ECO:0000269|PubMed:123277,
CC ECO:0000269|PubMed:33157039, ECO:0000269|PubMed:4562392,
CC ECO:0000269|PubMed:6389498}.
CC -!- SIMILARITY: Belongs to the RecC family. {ECO:0000255|HAMAP-
CC Rule:MF_01486}.
CC ---------------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC ---------------------------------------------------------------------------
DR EMBL; X03966; CAA27604.1; -; Genomic_DNA.
DR EMBL; U29581; AAB40469.1; -; Genomic_DNA.
DR EMBL; U00096; AAC75861.1; -; Genomic_DNA.
DR EMBL; AP009048; BAE76891.1; -; Genomic_DNA.
DR EMBL; AF176618; AAD54314.1; -; Genomic_DNA.
DR EMBL; X06227; CAA29575.1; -; Genomic_DNA.
DR PIR; A24137; NCECXV.
DR RefSeq; NP_417299.1; NC_000913.3.
DR RefSeq; WP_000946938.1; NZ_LN832404.1.
DR PDB; 1W36; X-ray; 3.10 A; C/F=1-1122.
DR PDB; 3K70; X-ray; 3.59 A; C/F=1-1122.
DR PDB; 5LD2; EM; 3.83 A; C=1-1122.
DR PDB; 5MBV; EM; 3.80 A; C=1-1122.
DR PDB; 6SJB; EM; 3.70 A; C=1-1122.
DR PDB; 6SJE; EM; 4.10 A; C=1-1122.
DR PDB; 6SJF; EM; 3.90 A; C=1-1122.
DR PDB; 6SJG; EM; 3.80 A; C=1-1122.
DR PDB; 6T2U; EM; 3.60 A; C=1-1122.
DR PDB; 6T2V; EM; 3.80 A; C=1-1122.
DR PDB; 7MR0; EM; 3.70 A; C=1-1122.
DR PDB; 7MR1; EM; 4.20 A; C=1-1122.
DR PDB; 7MR2; EM; 4.30 A; C=1-1122.
DR PDB; 7MR3; EM; 3.60 A; C=1-1122.
DR PDB; 7MR4; EM; 4.50 A; C=1-1122.
DR PDBsum; 1W36; -.
DR PDBsum; 3K70; -.
DR PDBsum; 5LD2; -.
DR PDBsum; 5MBV; -.
DR PDBsum; 6SJB; -.
DR PDBsum; 6SJE; -.
DR PDBsum; 6SJF; -.
DR PDBsum; 6SJG; -.
DR PDBsum; 6T2U; -.
DR PDBsum; 6T2V; -.
DR PDBsum; 7MR0; -.
DR PDBsum; 7MR1; -.
DR PDBsum; 7MR2; -.
DR PDBsum; 7MR3; -.
DR PDBsum; 7MR4; -.
DR AlphaFoldDB; P07648; -.
DR SMR; P07648; -.
DR BioGRID; 4261821; 369.
DR ComplexPortal; CPX-2197; Exodeoxyribonuclease V complex.
DR DIP; DIP-10650N; -.
DR IntAct; P07648; 3.
DR MINT; P07648; -.
DR STRING; 511145.b2822; -.
DR ChEMBL; CHEMBL2095232; -.
DR jPOST; P07648; -.
DR PaxDb; P07648; -.
DR PRIDE; P07648; -.
DR EnsemblBacteria; AAC75861; AAC75861; b2822.
DR EnsemblBacteria; BAE76891; BAE76891; BAE76891.
DR GeneID; 947294; -.
DR KEGG; ecj:JW2790; -.
DR KEGG; eco:b2822; -.
DR PATRIC; fig|1411691.4.peg.3914; -.
DR EchoBASE; EB0818; -.
DR eggNOG; COG1330; Bacteria.
DR HOGENOM; CLU_007513_0_0_6; -.
DR InParanoid; P07648; -.
DR OMA; LMQLNLW; -.
DR PhylomeDB; P07648; -.
DR BioCyc; EcoCyc:EG10825-MON; -.
DR BioCyc; MetaCyc:EG10825-MON; -.
DR BRENDA; 3.1.11.5; 2026.
DR EvolutionaryTrace; P07648; -.
DR PRO; PR:P07648; -.
DR Proteomes; UP000000318; Chromosome.
DR Proteomes; UP000000625; Chromosome.
DR GO; GO:0009338; C:exodeoxyribonuclease V complex; IDA:EcoCyc.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-UniRule.
DR GO; GO:0003677; F:DNA binding; IEA:UniProtKB-UniRule.
DR GO; GO:0003678; F:DNA helicase activity; IEA:UniProtKB-UniRule.
DR GO; GO:0008854; F:exodeoxyribonuclease V activity; IDA:EcoCyc.
DR GO; GO:0044355; P:clearance of foreign intracellular DNA; IMP:UniProtKB.
DR GO; GO:0006310; P:DNA recombination; IDA:EcoCyc.
DR GO; GO:0000724; P:double-strand break repair via homologous recombination; TAS:EcoCyc.
DR GO; GO:0000725; P:recombinational repair; IDA:ComplexPortal.
DR GO; GO:0009314; P:response to radiation; IMP:EcoCyc.
DR Gene3D; 1.10.10.160; -; 1.
DR Gene3D; 3.40.50.300; -; 2.
DR HAMAP; MF_01486; RecC; 1.
DR InterPro; IPR013986; DExx_box_DNA_helicase_dom_sf.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR006697; RecC.
DR InterPro; IPR041500; RecC_C.
DR InterPro; IPR011335; Restrct_endonuc-II-like.
DR Pfam; PF17946; RecC_C; 1.
DR PIRSF; PIRSF000980; RecC; 1.
DR SUPFAM; SSF52540; SSF52540; 2.
DR SUPFAM; SSF52980; SSF52980; 1.
DR TIGRFAMs; TIGR01450; recC; 1.
PE 1: Evidence at protein level;
KW 3D-structure; ATP-binding; Direct protein sequencing; DNA damage;
KW DNA repair; DNA-binding; Exonuclease; Helicase; Hydrolase; Nuclease;
KW Nucleotide-binding; Reference proteome.
FT CHAIN 1..1122
FT /note="RecBCD enzyme subunit RecC"
FT /id="PRO_0000087120"
FT DNA_BIND 971
FT DNA_BIND 1001
FT DNA_BIND 1078..1081
FT VARIANT 647..655
FT /note="QERISQRFL -> KNVSASVF (in recC-1004; holoenzyme
FT prefers an altered Chi over wild-type Chi sequence.
FT Pseudorevertant of a frameshift mutation at aa 647)"
FT MUTAGEN 38
FT /note="Q->A: Acts at variant Chi sequences."
FT /evidence="ECO:0000269|PubMed:22603794"
FT MUTAGEN 64
FT /note="L->A: Does not act at Chi."
FT /evidence="ECO:0000269|PubMed:22603794"
FT MUTAGEN 70
FT /note="W->A: Does not act at Chi."
FT /evidence="ECO:0000269|PubMed:22603794"
FT MUTAGEN 133
FT /note="D->A: Does not act at Chi."
FT /evidence="ECO:0000269|PubMed:22603794"
FT MUTAGEN 134
FT /note="L->A: Acts at variant Chi sequences."
FT /evidence="ECO:0000269|PubMed:22603794"
FT MUTAGEN 136
FT /note="D->A: Does not act at Chi."
FT /evidence="ECO:0000269|PubMed:22603794"
FT MUTAGEN 137
FT /note="Q->A: Acts at variant Chi sequences."
FT /evidence="ECO:0000269|PubMed:22603794"
FT MUTAGEN 142
FT /note="R->A: Acts at variant Chi sequences."
FT /evidence="ECO:0000269|PubMed:22603794"
FT MUTAGEN 186
FT /note="R->A,C,H: Does not act at Chi."
FT /evidence="ECO:0000269|PubMed:22603794"
FT MUTAGEN 705
FT /note="D->A,H: Acts at variant Chi sequences."
FT /evidence="ECO:0000269|PubMed:22603794"
FT STRAND 2..8
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 10..22
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 34..36
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 40..52
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 65..76
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 77..79
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 88..102
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 104..106
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 109..114
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 122..138
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 143..150
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 162..178
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 187..189
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 190..198
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 209..215
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 221..230
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 231..233
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 234..241
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 254..257
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 258..260
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 264..270
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 279..282
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 288..291
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 298..303
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 305..314
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 318..324
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 334..344
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 355..359
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 364..366
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 373..381
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 382..399
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 405..407
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 408..413
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 415..425
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 441..443
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 445..447
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 449..457
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 458..462
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 467..473
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 477..482
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 487..500
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 508..513
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 520..523
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 524..535
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 544..546
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 558..577
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 584..587
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 590..598
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 604..625
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 634..647
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 652..655
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 656..658
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 660..662
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 672..678
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 682..684
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 696..699
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 708..722
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 723..732
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 736..738
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 746..756
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 765..767
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 769..780
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 791..793
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 794..797
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 804..806
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 807..810
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 834..840
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 841..843
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 844..850
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 851..853
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 874..889
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 894..904
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 910..932
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 939..947
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 950..959
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 961..967
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 974..989
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 995..999
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 1001..1003
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 1005..1008
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 1013..1029
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 1030..1032
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 1039..1049
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 1053..1055
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 1061..1075
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 1079..1081
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 1088..1091
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 1099..1117
FT /evidence="ECO:0007829|PDB:1W36"
SQ SEQUENCE 1122 AA; 128848 MW; 48B90092DFC1BD21 CRC64;
MLRVYHSNRL DVLEALMEFI VERERLDDPF EPEMILVQST GMAQWLQMTL SQKFGIAANI
DFPLPASFIW DMFVRVLPEI PKESAFNKQS MSWKLMTLLP QLLEREDFTL LRHYLTDDSD
KRKLFQLSSK AADLFDQYLV YRPDWLAQWE TGHLVEGLGE AQAWQAPLWK ALVEYTHQLG
QPRWHRANLY QRFIETLESA TTCPPGLPSR VFICGISALP PVYLQALQAL GKHIEIHLLF
TNPCRYYWGD IKDPAYLAKL LTRQRRHSFE DRELPLFRDS ENAGQLFNSD GEQDVGNPLL
ASWGKLGRDY IYLLSDLESS QELDAFVDVT PDNLLHNIQS DILELENRAV AGVNIEEFSR
SDNKRPLDPL DSSITFHVCH SPQREVEVLH DRLLAMLEED PTLTPRDIIV MVADIDSYSP
FIQAVFGSAP ADRYLPYAIS DRRARQSHPV LEAFISLLSL PDSRFVSEDV LALLDVPVLA
ARFDITEEGL RYLRQWVNES GIRWGIDDDN VRELELPATG QHTWRFGLTR MLLGYAMESA
QGEWQSVLPY DESSGLIAEL VGHLASLLMQ LNIWRRGLAQ ERPLEEWLPV CRDMLNAFFL
PDAETEAAMT LIEQQWQAII AEGLGAQYGD AVPLSLLRDE LAQRLDQERI SQRFLAGPVN
ICTLMPMRSI PFKVVCLLGM NDGVYPRQLA PLGFDLMSQK PKRGDRSRRD DDRYLFLEAL
ISAQQKLYIS YIGRSIQDNS ERFPSVLVQE LIDYIGQSHY LPGDEALNCD ESEARVKAHL
TCLHTRMPFD PQNYQPGERQ SYAREWLPAA SQAGKAHSEF VQPLPFTLPE TVPLETLQRF
WAHPVRAFFQ MRLQVNFRTE DSEIPDTEPF ILEGLSRYQI NQQLLNALVE QDDAERLFRR
FRAAGDLPYG AFGEIFWETQ CQEMQQLADR VIACRQPGQS MEIDLACNGV QITGWLPQVQ
PDGLLRWRPS LLSVAQGMQL WLEHLVYCAS GGNGESRLFL RKDGEWRFPP LAAEQALHYL
SQLIEGYREG MSAPLLVLPE SGGAWLKTCY DAQNDAMLDD DSTLQKARTK FLQAYEGNMM
VRGEGDDIWY QRLWRQLTPE TMEAIVEQSQ RFLLPLFRFN QS