RECD_ECOLI
ID RECD_ECOLI Reviewed; 608 AA.
AC P04993; Q2MA18; Q59378;
DT 13-AUG-1987, integrated into UniProtKB/Swiss-Prot.
DT 01-NOV-1997, sequence version 2.
DT 03-AUG-2022, entry version 181.
DE RecName: Full=RecBCD enzyme subunit RecD {ECO:0000255|HAMAP-Rule:MF_01487};
DE EC=3.1.11.5 {ECO:0000255|HAMAP-Rule:MF_01487};
DE AltName: Full=Exodeoxyribonuclease V 67 kDa polypeptide;
DE AltName: Full=Exodeoxyribonuclease V alpha chain;
DE AltName: Full=Exonuclease V subunit RecD {ECO:0000255|HAMAP-Rule:MF_01487};
DE Short=ExoV subunit RecD {ECO:0000255|HAMAP-Rule:MF_01487};
DE AltName: Full=Helicase/nuclease RecBCD subunit RecD {ECO:0000255|HAMAP-Rule:MF_01487};
GN Name=recD {ECO:0000255|HAMAP-Rule:MF_01487}; Synonyms=hopE;
GN OrderedLocusNames=b2819, JW2787;
OS Escherichia coli (strain K12).
OC Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales;
OC Enterobacteriaceae; Escherichia.
OX NCBI_TaxID=83333;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=3537961; DOI=10.1093/nar/14.21.8583;
RA Finch P.W., Storey A., Brown K., Hickson I.D., Emmerson P.T.;
RT "Complete nucleotide sequence of recD, the structural gene for the alpha
RT subunit of Exonuclease V of Escherichia coli.";
RL Nucleic Acids Res. 14:8583-8594(1986).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC STRAIN=K12 / MG1655 / ATCC 47076;
RX PubMed=9278503; DOI=10.1126/science.277.5331.1453;
RA Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V.,
RA Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F.,
RA Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B.,
RA Shao Y.;
RT "The complete genome sequence of Escherichia coli K-12.";
RL Science 277:1453-1462(1997).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC STRAIN=K12 / W3110 / ATCC 27325 / DSM 5911;
RX PubMed=16738553; DOI=10.1038/msb4100049;
RA Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S.,
RA Ohtsubo E., Baba T., Wanner B.L., Mori H., Horiuchi T.;
RT "Highly accurate genome sequences of Escherichia coli K-12 strains MG1655
RT and W3110.";
RL Mol. Syst. Biol. 2:E1-E5(2006).
RN [4]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-31.
RX PubMed=3537960; DOI=10.1093/nar/14.21.8573;
RA Finch P.W., Storey A., Chapman K.E., Brown K., Hickson I.D., Emmerson P.T.;
RT "Complete nucleotide sequence of the Escherichia coli recB gene.";
RL Nucleic Acids Res. 14:8573-8582(1986).
RN [5]
RP IDENTIFICATION, OPERON, SUBUNIT, AND DISRUPTION PHENOTYPE.
RX PubMed=3526335; DOI=10.1073/pnas.83.15.5558;
RA Amundsen S.K., Taylor A.F., Chaudhury A.M., Smith G.R.;
RT "recD: the gene for an essential third subunit of exonuclease V.";
RL Proc. Natl. Acad. Sci. U.S.A. 83:5558-5562(1986).
RN [6]
RP PROTEIN SEQUENCE OF 1-10, FUNCTION AS AN EXONUCLEASE; HELICASE AND ATPASE,
RP SUBUNIT, AND MUTAGENESIS OF LYS-177.
RX PubMed=1618858; DOI=10.1016/s0021-9258(18)42249-1;
RA Masterson C., Boehmer P.E., McDonald F., Chaudhuri S., Hickson I.D.,
RA Emmerson P.T.;
RT "Reconstitution of the activities of the RecBCD holoenzyme of Escherichia
RT coli from the purified subunits.";
RL J. Biol. Chem. 267:13564-13572(1992).
RN [7]
RP ACTIVITY REGULATION BY LAMBDA GAM PROTEIN (MICROBIAL INFECTION).
RX PubMed=4275917; DOI=10.1073/pnas.70.8.2215;
RA Sakaki Y., Karu A.E., Linn S., Echols H.;
RT "Purification and properties of the gamma-protein specified by
RT bacteriophage lambda: an inhibitor of the host RecBC recombination
RT enzyme.";
RL Proc. Natl. Acad. Sci. U.S.A. 70:2215-2219(1973).
RN [8]
RP ACTIVITY REGULATION BY LAMBDA GAM PROTEIN (MICROBIAL INFECTION), AND
RP INTERACTION WITH LAMBDA GAMS (MICROBIAL INFECTION).
RX PubMed=1653221; DOI=10.1128/jb.173.18.5808-5821.1991;
RA Murphy K.C.;
RT "Lambda Gam protein inhibits the helicase and chi-stimulated recombination
RT activities of Escherichia coli RecBCD enzyme.";
RL J. Bacteriol. 173:5808-5821(1991).
RN [9]
RP FUNCTION, AND ACTIVITY REGULATION.
RX PubMed=1535156; DOI=10.1073/pnas.89.12.5226;
RA Taylor A.F., Smith G.R.;
RT "RecBCD enzyme is altered upon cutting DNA at a chi recombination
RT hotspot.";
RL Proc. Natl. Acad. Sci. U.S.A. 89:5226-5230(1992).
RN [10]
RP FUNCTION IN HOMOLOGOUS RECOMBINATION.
RX PubMed=7608206; DOI=10.1074/jbc.270.27.16360;
RA Dixon D.A., Kowalczykowski S.C.;
RT "Role of the Escherichia coli recombination hotspot, chi, in RecABCD-
RT dependent homologous pairing.";
RL J. Biol. Chem. 270:16360-16370(1995).
RN [11]
RP FUNCTION IN RECA-LOADING.
RX PubMed=9230304; DOI=10.1016/s0092-8674(00)80315-3;
RA Anderson D.G., Kowalczykowski S.C.;
RT "The translocating RecBCD enzyme stimulates recombination by directing RecA
RT protein onto ssDNA in a chi-regulated manner.";
RL Cell 90:77-86(1997).
RN [12]
RP FUNCTION IN RECOGNITION OF CHI.
RX PubMed=9192629; DOI=10.1073/pnas.94.13.6706;
RA Bianco P.R., Kowalczykowski S.C.;
RT "The recombination hotspot Chi is recognized by the translocating RecBCD
RT enzyme as the single strand of DNA containing the sequence 5'-GCTGGTGG-
RT 3'.";
RL Proc. Natl. Acad. Sci. U.S.A. 94:6706-6711(1997).
RN [13]
RP FUNCTION.
RX PubMed=9790841; DOI=10.1006/jmbi.1998.2127;
RA Yu M., Souaya J., Julin D.A.;
RT "Identification of the nuclease active site in the multifunctional RecBCD
RT enzyme by creation of a chimeric enzyme.";
RL J. Mol. Biol. 283:797-808(1998).
RN [14]
RP FUNCTION.
RX PubMed=9448271; DOI=10.1073/pnas.95.3.981;
RA Yu M., Souaya J., Julin D.A.;
RT "The 30-kDa C-terminal domain of the RecB protein is critical for the
RT nuclease activity, but not the helicase activity, of the RecBCD enzyme from
RT Escherichia coli.";
RL Proc. Natl. Acad. Sci. U.S.A. 95:981-986(1998).
RN [15]
RP FUNCTION, AND ACTIVITY REGULATION.
RX PubMed=10197988; DOI=10.1101/gad.13.7.890;
RA Taylor A.F., Smith G.R.;
RT "Regulation of homologous recombination: Chi inactivates RecBCD enzyme by
RT disassembly of the three subunits.";
RL Genes Dev. 13:890-900(1999).
RN [16]
RP FUNCTION IN RECA-LOADING, AND DISRUPTION PHENOTYPE.
RX PubMed=10840065; DOI=10.1073/pnas.130192397;
RA Amundsen S.K., Taylor A.F., Smith G.R.;
RT "The RecD subunit of the Escherichia coli RecBCD enzyme inhibits RecA
RT loading, homologous recombination, and DNA repair.";
RL Proc. Natl. Acad. Sci. U.S.A. 97:7399-7404(2000).
RN [17]
RP FUNCTION AS A FAST 5'-3' HELICASE, AND MUTAGENESIS OF LYS-177.
RX PubMed=12815437; DOI=10.1038/nature01674;
RA Taylor A.F., Smith G.R.;
RT "RecBCD enzyme is a DNA helicase with fast and slow motors of opposite
RT polarity.";
RL Nature 423:889-893(2003).
RN [18]
RP FUNCTION AS AN ATPASE, FUNCTION AS A 5'-3' HELICASE, ACTIVITY REGULATION,
RP AND MUTAGENESIS OF LYS-177.
RX PubMed=12815438; DOI=10.1038/nature01673;
RA Dillingham M.S., Spies M., Kowalczykowski S.C.;
RT "RecBCD enzyme is a bipolar DNA helicase.";
RL Nature 423:893-897(2003).
RN [19]
RP FUNCTION, RATE, DNA-BINDING, AND MUTAGENESIS OF LYS-177.
RX PubMed=16041061; DOI=10.1074/jbc.m505520200;
RA Dillingham M.S., Webb M.R., Kowalczykowski S.C.;
RT "Bipolar DNA translocation contributes to highly processive DNA unwinding
RT by RecBCD enzyme.";
RL J. Biol. Chem. 280:37069-37077(2005).
RN [20]
RP FUNCTION, AND MUTAGENESIS OF LYS-177.
RX PubMed=18079176; DOI=10.1101/gad.1605807;
RA Amundsen S.K., Taylor A.F., Reddy M., Smith G.R.;
RT "Intersubunit signaling in RecBCD enzyme, a complex protein machine
RT regulated by Chi hot spots.";
RL Genes Dev. 21:3296-3307(2007).
RN [21]
RP FUNCTION, ENZYME RATE, ENZYME STATE SWITCHING, AND MUTAGENESIS OF LYS-177.
RX PubMed=23851395; DOI=10.1038/nature12333;
RA Liu B., Baskin R.J., Kowalczykowski S.C.;
RT "DNA unwinding heterogeneity by RecBCD results from static molecules able
RT to equilibrate.";
RL Nature 500:482-485(2013).
RN [22]
RP FUNCTION, AND MODEL OF DOMAIN MOVEMENT.
RX PubMed=25073102; DOI=10.1016/j.jmb.2014.07.017;
RA Taylor A.F., Amundsen S.K., Guttman M., Lee K.K., Luo J., Ranish J.,
RA Smith G.R.;
RT "Control of RecBCD enzyme activity by DNA binding- and Chi hotspot-
RT dependent conformational changes.";
RL J. Mol. Biol. 426:3479-3499(2014).
RN [23]
RP DISRUPTION PHENOTYPE.
RC STRAIN=K12 / BW25141;
RX PubMed=33157039; DOI=10.1016/j.cell.2020.09.065;
RA Millman A., Bernheim A., Stokar-Avihail A., Fedorenko T., Voichek M.,
RA Leavitt A., Oppenheimer-Shaanan Y., Sorek R.;
RT "Bacterial Retrons Function In Anti-Phage Defense.";
RL Cell 183:1551-1561(2020).
RN [24] {ECO:0007744|PDB:1W36}
RP X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) IN COMPLEX WITH DNA, AND SUBUNIT.
RX PubMed=15538360; DOI=10.1038/nature02988;
RA Singleton M.R., Dillingham M.S., Gaudier M., Kowalczykowski S.C.,
RA Wigley D.B.;
RT "Crystal structure of RecBCD enzyme reveals a machine for processing DNA
RT breaks.";
RL Nature 432:187-193(2004).
RN [25] {ECO:0007744|PDB:3K70}
RP X-RAY CRYSTALLOGRAPHY (3.59 ANGSTROMS) IN COMPLEX WITH DNA, AND SUBUNIT.
RX PubMed=18668125; DOI=10.1038/emboj.2008.144;
RA Saikrishnan K., Griffiths S.P., Cook N., Court R., Wigley D.B.;
RT "DNA binding to RecD: role of the 1B domain in SF1B helicase activity.";
RL EMBO J. 27:2222-2229(2008).
RN [26] {ECO:0007744|PDB:5LD2}
RP STRUCTURE BY ELECTRON MICROSCOPY (3.83 ANGSTROMS) OF 2-608 OF RECBCD IN
RP COMPLEX WITH FORKED DNA SUBSTRATE, DOMAIN, AND DNA-BINDING.
RX PubMed=27644322; DOI=10.7554/elife.18227;
RA Wilkinson M., Chaban Y., Wigley D.B.;
RT "Mechanism for nuclease regulation in RecBCD.";
RL Elife 5:0-0(2016).
RN [27] {ECO:0007744|PDB:5MBV}
RP STRUCTURE BY ELECTRON MICROSCOPY (3.80 ANGSTROMS) OF 2-608.
RX PubMed=28009252; DOI=10.7554/elife.22963;
RA Wilkinson M., Troman L., Wan Nur Ismah W.A., Chaban Y., Avison M.B.,
RA Dillingham M.S., Wigley D.B.;
RT "Structural basis for the inhibition of RecBCD by Gam and its synergistic
RT antibacterial effect with quinolones.";
RL Elife 5:0-0(2016).
RN [28]
RP REVIEW.
RX PubMed=19052323; DOI=10.1128/mmbr.00020-08;
RA Dillingham M.S., Kowalczykowski S.C.;
RT "RecBCD enzyme and the repair of double-stranded DNA breaks.";
RL Microbiol. Mol. Biol. Rev. 72:642-671(2008).
RN [29]
RP REVIEW.
RX PubMed=22688812; DOI=10.1128/mmbr.05026-11;
RA Smith G.R.;
RT "How RecBCD enzyme and Chi promote DNA break repair and recombination: a
RT molecular biologist's view.";
RL Microbiol. Mol. Biol. Rev. 76:217-228(2012).
CC -!- FUNCTION: A helicase/nuclease that prepares dsDNA breaks (DSB) for
CC recombinational DNA repair. Binds to DSBs and unwinds DNA via a rapid
CC (>1 kb/second) and highly processive (>30 kb) ATP-dependent
CC bidirectional helicase. Unwinds dsDNA until it encounters a Chi
CC (crossover hotspot instigator, 5'-GCTGGTGG-3') sequence from the 3'
CC direction. Cuts ssDNA a few nucleotides 3' to Chi site, by nicking one
CC strand or switching the strand degraded (depending on the reaction
CC conditions). The properties and activities of the enzyme are changed at
CC Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang which
CC facilitates RecA-binding to the ssDNA for homologous DNA recombination
CC and repair. In the holoenzyme this subunit contributes ssDNA-dependent
CC ATPase and fast 5'-3' helicase activity. When added to pre-assembled
CC RecBC greatly stimulates nuclease activity and augments holoenzyme
CC processivity. Negatively regulates the RecA-loading ability of RecBCD.
CC {ECO:0000269|PubMed:10197988, ECO:0000269|PubMed:10840065,
CC ECO:0000269|PubMed:12815437, ECO:0000269|PubMed:12815438,
CC ECO:0000269|PubMed:1535156, ECO:0000269|PubMed:16041061,
CC ECO:0000269|PubMed:1618858, ECO:0000269|PubMed:18079176,
CC ECO:0000269|PubMed:23851395, ECO:0000269|PubMed:7608206,
CC ECO:0000269|PubMed:9192629, ECO:0000269|PubMed:9230304,
CC ECO:0000269|PubMed:9448271, ECO:0000269|PubMed:9790841}.
CC -!- CATALYTIC ACTIVITY:
CC Reaction=Exonucleolytic cleavage (in the presence of ATP) in either
CC 5'- to 3'- or 3'- to 5'-direction to yield 5'-
CC phosphooligonucleotides.; EC=3.1.11.5; Evidence={ECO:0000255|HAMAP-
CC Rule:MF_01487};
CC -!- ACTIVITY REGULATION: In isolated subunit ATPase and 5'-3' helicase
CC activity are inhibited by non-hydrolyzable ATP analogs and EDTA
CC (PubMed:12815438). After reacting with DNA bearing a Chi site the
CC holoenzyme is disassembled and loses exonuclease activity, DNA
CC unwinding and Chi-directed DNA cleavage; RecB remains complexed with
CC ssDNA, which may prevent holoenzyme reassembly (PubMed:10197988). High
CC levels of Mg(2+) (13 mM MgCl(2+)) or incubation with DNase allow
CC holoenyzme reassembly, suggesting it is DNA bound to RecB that prevents
CC reassembly (PubMed:10197988). {ECO:0000269|PubMed:10197988,
CC ECO:0000269|PubMed:12815438, ECO:0000269|PubMed:1535156}.
CC -!- ACTIVITY REGULATION: (Microbial infection) RecBCD is inhibited by the
CC lambda virus gam protein (both GamL and GamS isoforms); in vitro a
CC short preincubation prior to adding DNA results in maximal inhibition.
CC {ECO:0000269|PubMed:1653221, ECO:0000305|PubMed:4275917}.
CC -!- SUBUNIT: Heterotrimer of RecB, RecC and RecD. All subunits contribute
CC to DNA-binding. {ECO:0000255|HAMAP-Rule:MF_01487,
CC ECO:0000269|PubMed:15538360, ECO:0000269|PubMed:1618858,
CC ECO:0000269|PubMed:18668125, ECO:0000269|PubMed:3526335}.
CC -!- SUBUNIT: (Microbial infection) Lambda virus GamS protein interacts with
CC the enzyme without displacing any of the subunits.
CC {ECO:0000269|PubMed:1653221}.
CC -!- DOMAIN: The holoenzyme may undergo conformational shifts upon DNA
CC binding: the nuclease domain of RecB may swing away from the DNA exit
CC tunnel in RecC. When Chi DNA binds to the RecC tunnel the nuclease
CC domain may then swing back to its original position (that seen in
CC crystal structures), allowing it to nick the DNA 3' of the Chi site and
CC then rotate to load RecA. At high Mg(2+) the nuclease domain may swing
CC back more frequently, explaining differences seen in assays performed
CC at high Mg(2+) (PubMed:25073102). As ssDNA is unwound and fed to the
CC RecD subunit the latter transmits conformational changes through each
CC subunit to activate the RecB nuclease (PubMed:27644322).
CC {ECO:0000269|PubMed:25073102, ECO:0000269|PubMed:27644322}.
CC -!- DISRUPTION PHENOTYPE: Loss of RecBCD enzyme exonuclease activity, no
CC effect on recombination proficiency or resistance to DNA-damaging
CC agents (PubMed:10840065, PubMed:3526335). Cells can be transformed with
CC retron Ec48-containing plasmids (PubMed:33157039).
CC {ECO:0000269|PubMed:10840065, ECO:0000269|PubMed:33157039,
CC ECO:0000269|PubMed:3526335}.
CC -!- SIMILARITY: Belongs to the RecD family. {ECO:0000255|HAMAP-
CC Rule:MF_01487}.
CC ---------------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC ---------------------------------------------------------------------------
DR EMBL; X04582; CAA28253.1; -; Genomic_DNA.
DR EMBL; U29581; AAB40466.1; -; Genomic_DNA.
DR EMBL; U00096; AAC75858.1; -; Genomic_DNA.
DR EMBL; AP009048; BAE76888.1; -; Genomic_DNA.
DR EMBL; X04581; CAA28251.1; -; Genomic_DNA.
DR PIR; D65064; NCECXF.
DR RefSeq; NP_417296.1; NC_000913.3.
DR RefSeq; WP_000775955.1; NZ_LN832404.1.
DR PDB; 1W36; X-ray; 3.10 A; D/G=1-608.
DR PDB; 3K70; X-ray; 3.59 A; D/G=1-608.
DR PDB; 5LD2; EM; 3.83 A; D=2-608.
DR PDB; 5MBV; EM; 3.80 A; D=2-608.
DR PDB; 6SJB; EM; 3.70 A; D=1-608.
DR PDB; 6SJE; EM; 4.10 A; D=1-608.
DR PDB; 6SJF; EM; 3.90 A; D=1-608.
DR PDB; 6SJG; EM; 3.80 A; D=1-608.
DR PDB; 6T2U; EM; 3.60 A; D=1-608.
DR PDB; 6T2V; EM; 3.80 A; D=1-608.
DR PDB; 7MR0; EM; 3.70 A; D=1-608.
DR PDB; 7MR1; EM; 4.20 A; D=1-608.
DR PDB; 7MR2; EM; 4.30 A; D=1-608.
DR PDB; 7MR3; EM; 3.60 A; D=1-608.
DR PDB; 7MR4; EM; 4.50 A; D=1-608.
DR PDBsum; 1W36; -.
DR PDBsum; 3K70; -.
DR PDBsum; 5LD2; -.
DR PDBsum; 5MBV; -.
DR PDBsum; 6SJB; -.
DR PDBsum; 6SJE; -.
DR PDBsum; 6SJF; -.
DR PDBsum; 6SJG; -.
DR PDBsum; 6T2U; -.
DR PDBsum; 6T2V; -.
DR PDBsum; 7MR0; -.
DR PDBsum; 7MR1; -.
DR PDBsum; 7MR2; -.
DR PDBsum; 7MR3; -.
DR PDBsum; 7MR4; -.
DR AlphaFoldDB; P04993; -.
DR SMR; P04993; -.
DR BioGRID; 4260684; 132.
DR ComplexPortal; CPX-2197; Exodeoxyribonuclease V complex.
DR DIP; DIP-10651N; -.
DR IntAct; P04993; 13.
DR MINT; P04993; -.
DR STRING; 511145.b2819; -.
DR BindingDB; P04993; -.
DR ChEMBL; CHEMBL2095232; -.
DR jPOST; P04993; -.
DR PaxDb; P04993; -.
DR PRIDE; P04993; -.
DR EnsemblBacteria; AAC75858; AAC75858; b2819.
DR EnsemblBacteria; BAE76888; BAE76888; BAE76888.
DR GeneID; 947287; -.
DR KEGG; ecj:JW2787; -.
DR KEGG; eco:b2819; -.
DR PATRIC; fig|1411691.4.peg.3917; -.
DR EchoBASE; EB0819; -.
DR eggNOG; COG0507; Bacteria.
DR HOGENOM; CLU_007524_1_2_6; -.
DR InParanoid; P04993; -.
DR OMA; MIDLEMM; -.
DR PhylomeDB; P04993; -.
DR BioCyc; EcoCyc:EG10826-MON; -.
DR BioCyc; MetaCyc:EG10826-MON; -.
DR BRENDA; 3.1.11.5; 2026.
DR EvolutionaryTrace; P04993; -.
DR PRO; PR:P04993; -.
DR Proteomes; UP000000318; Chromosome.
DR Proteomes; UP000000625; Chromosome.
DR GO; GO:0009338; C:exodeoxyribonuclease V complex; IDA:EcoCyc.
DR GO; GO:0043139; F:5'-3' DNA helicase activity; IBA:GO_Central.
DR GO; GO:0005524; F:ATP binding; IDA:EcoliWiki.
DR GO; GO:0003677; F:DNA binding; IEA:UniProtKB-UniRule.
DR GO; GO:0008854; F:exodeoxyribonuclease V activity; IDA:EcoCyc.
DR GO; GO:0004386; F:helicase activity; IDA:EcoCyc.
DR GO; GO:0017116; F:single-stranded DNA helicase activity; IDA:EcoCyc.
DR GO; GO:0006974; P:cellular response to DNA damage stimulus; IDA:EcoliWiki.
DR GO; GO:0006310; P:DNA recombination; IDA:EcoliWiki.
DR GO; GO:0000724; P:double-strand break repair via homologous recombination; TAS:EcoCyc.
DR GO; GO:0000725; P:recombinational repair; IDA:ComplexPortal.
DR Gene3D; 1.10.10.1020; -; 1.
DR Gene3D; 3.40.50.300; -; 3.
DR HAMAP; MF_01487; RecD; 1.
DR InterPro; IPR003593; AAA+_ATPase.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR006344; RecD.
DR InterPro; IPR041851; RecD_N.
DR InterPro; IPR027785; UvrD-like_helicase_C.
DR Pfam; PF13538; UvrD_C_2; 1.
DR SMART; SM00382; AAA; 1.
DR SUPFAM; SSF52540; SSF52540; 2.
DR TIGRFAMs; TIGR01447; recD; 1.
PE 1: Evidence at protein level;
KW 3D-structure; ATP-binding; Direct protein sequencing; DNA damage;
KW DNA repair; DNA-binding; Exonuclease; Helicase; Hydrolase; Nuclease;
KW Nucleotide-binding; Reference proteome.
FT CHAIN 1..608
FT /note="RecBCD enzyme subunit RecD"
FT /id="PRO_0000087115"
FT DNA_BIND 247
FT /evidence="ECO:0000305"
FT BINDING 171..178
FT /ligand="ATP"
FT /ligand_id="ChEBI:CHEBI:30616"
FT /evidence="ECO:0000305"
FT MUTAGEN 177
FT /note="K->Q: Loss of ATP-dependent exonuclease activity in
FT holoenzyme. Subunit loses ATPase and has ~5% 5'-3' helicase
FT activity, holoenzyme has 2-4 fold less helicase activity,
FT 5-fold less processivity."
FT /evidence="ECO:0000269|PubMed:12815437,
FT ECO:0000269|PubMed:12815438, ECO:0000269|PubMed:16041061,
FT ECO:0000269|PubMed:1618858, ECO:0000269|PubMed:18079176,
FT ECO:0000269|PubMed:23851395"
FT CONFLICT 247..248
FT /note="QP -> HR (in Ref. 1; CAA28253)"
FT /evidence="ECO:0000305"
FT CONFLICT 306
FT /note="A -> V (in Ref. 1; CAA28253)"
FT /evidence="ECO:0000305"
FT CONFLICT 390
FT /note="F -> L (in Ref. 1; CAA28253)"
FT /evidence="ECO:0000305"
FT HELIX 4..12
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 18..27
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 28..31
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 33..47
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 51..54
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 55..60
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 61..64
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 65..67
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 81..87
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 91..96
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 99..102
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 104..109
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 110..123
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 134..142
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 153..162
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 164..170
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 177..190
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 199..205
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 206..216
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 218..222
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 239..241
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 264..268
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 271..273
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 276..284
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 291..296
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 301..303
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 310..313
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 314..317
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 323..332
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 333..335
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 346..349
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 352..354
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 367..374
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 378..382
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 383..385
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 387..389
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 392..394
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 401..403
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 404..414
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 416..423
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 432..435
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 438..443
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 445..450
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 451..459
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 460..462
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 534..537
FT /evidence="ECO:0007829|PDB:1W36"
FT TURN 538..543
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 546..552
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 559..561
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 563..570
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 573..575
FT /evidence="ECO:0007829|PDB:1W36"
FT STRAND 577..580
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 585..591
FT /evidence="ECO:0007829|PDB:1W36"
FT HELIX 600..603
FT /evidence="ECO:0007829|PDB:1W36"
SQ SEQUENCE 608 AA; 66902 MW; C37C62E17D41AA82 CRC64;
MKLQKQLLEA VEHKQLRPLD VQFALTVAGD EHPAVTLAAA LLSHDAGEGH VCLPLSRLEN
NEASHPLLAT CVSEIGELQN WEECLLASQA VSRGDEPTPM ILCGDRLYLN RMWCNERTVA
RFFNEVNHAI EVDEALLAQT LDKLFPVSDE INWQKVAAAV ALTRRISVIS GGPGTGKTTT
VAKLLAALIQ MADGERCRIR LAAPTGKAAA RLTESLGKAL RQLPLTDEQK KRIPEDASTL
HRLLGAQPGS QRLRHHAGNP LHLDVLVVDE ASMIDLPMMS RLIDALPDHA RVIFLGDRDQ
LASVEAGAVL GDICAYANAG FTAERARQLS RLTGTHVPAG TGTEAASLRD SLCLLQKSYR
FGSDSGIGQL AAAINRGDKT AVKTVFQQDF TDIEKRLLQS GEDYIAMLEE ALAGYGRYLD
LLQARAEPDL IIQAFNEYQL LCALREGPFG VAGLNERIEQ FMQQKRKIHR HPHSRWYEGR
PVMIARNDSA LGLFNGDIGI ALDRGQGTRV WFAMPDGNIK SVQPSRLPEH ETTWAMTVHK
SQGSEFDHAA LILPSQRTPV VTRELVYTAV TRARRRLSLY ADERILSAAI ATRTERRSGL
AALFSSRE