ATPJ_PICAN
ID ATPJ_PICAN Reviewed; 89 AA.
AC C0HK61;
DT 10-OCT-2018, integrated into UniProtKB/Swiss-Prot.
DT 10-OCT-2018, sequence version 1.
DT 03-AUG-2022, entry version 8.
DE RecName: Full=ATP synthase subunit e, mitochondrial {ECO:0000250|UniProtKB:P81449};
DE Short=ATPase subunit e {ECO:0000250|UniProtKB:P81449};
DE AltName: Full=Translocase of the inner membrane protein 11 {ECO:0000250|UniProtKB:P81449};
GN Name=TIM11 {ECO:0000250|UniProtKB:P81449};
GN Synonyms=ATP21 {ECO:0000250|UniProtKB:P81449};
OS Pichia angusta (Yeast) (Hansenula polymorpha).
OC Eukaryota; Fungi; Dikarya; Ascomycota; Saccharomycotina; Saccharomycetes;
OC Saccharomycetales; Pichiaceae; Ogataea.
OX NCBI_TaxID=870730;
RN [1] {ECO:0000305}
RP PARTIAL PROTEIN SEQUENCE.
RC STRAIN=A16 / NCYC 2310 {ECO:0000303|Ref.1};
RA Fearnley I.M.;
RL Submitted (AUG-2016) to UniProtKB.
RN [2] {ECO:0000305}
RP PROTEIN SEQUENCE OF 1-7, IDENTIFICATION IN ATP SYNTHASE COMPLEX, FUNCTION
RP OF ATPASE COMPLEX, SUBUNIT, SUBCELLULAR LOCATION, MASS SPECTROMETRY,
RP IDENTIFICATION BY MASS SPECTROMETRY, AND ACETYLATION AT SER-1.
RC STRAIN=A16 / NCYC 2310 {ECO:0000303|PubMed:25759169};
RX PubMed=25759169; DOI=10.1042/bj20150197;
RA Liu S., Charlesworth T.J., Bason J.V., Montgomery M.G., Harbour M.E.,
RA Fearnley I.M., Walker J.E.;
RT "The purification and characterization of ATP synthase complexes from the
RT mitochondria of four fungal species.";
RL Biochem. J. 468:167-175(2015).
RN [3] {ECO:0000305}
RP STRUCTURE BY ELECTRON MICROSCOPY (7.0 ANGSTROMS) OF MONOMERIC ATP SYNTHASE
RP COMPLEX IN COMPLEX WITH BOVINE ATPIF1, FUNCTION, SUBUNIT, AND SUBCELLULAR
RP LOCATION.
RX PubMed=27791192; DOI=10.1073/pnas.1615902113;
RA Vinothkumar K.R., Montgomery M.G., Liu S., Walker J.E.;
RT "Structure of the mitochondrial ATP synthase from Pichia angusta determined
RT by electron cryo-microscopy.";
RL Proc. Natl. Acad. Sci. U.S.A. 113:12709-12714(2016).
CC -!- FUNCTION: Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or
CC Complex V) produces ATP from ADP in the presence of a proton gradient
CC across the membrane which is generated by electron transport complexes
CC of the respiratory chain (PubMed:25759169). F-type ATP synthases
CC consist of two structural domains, F(1) - containing the
CC extramembraneous catalytic core, and F(0) - containing the membrane
CC proton channel, linked together by a central stalk and a peripheral
CC stalk (PubMed:27791192). During catalysis, ATP synthesis in the
CC catalytic domain of F(1) is coupled via a rotary mechanism of the
CC central stalk subunits to proton translocation (By similarity). Part of
CC the complex F(0) domain (By similarity). Minor subunit located with
CC subunit a/ATP6 in the membrane (By similarity). Together with subunit
CC g/ATP20, probably contributes to membrane curvature at the site of the
CC ATP synthase dimer, ultimately contributing to formation of cristae (By
CC similarity). {ECO:0000250|UniProtKB:B5FVG3,
CC ECO:0000269|PubMed:25759169, ECO:0000269|PubMed:27791192}.
CC -!- SUBUNIT: F-type ATP synthases have 2 components, the catalytic core
CC F(1) and the membrane-embedded component F(0), linked together by a
CC central stalk and a peripheral stalk (PubMed:27791192). The central
CC stalk, also called rotor shaft, is often seen as part of F(1)
CC (PubMed:27791192). The peripheral stalk is seen as part of F(0). F(0)
CC contains the membrane channel next to the rotor (PubMed:27791192). F-
CC type ATP synthases form dimers but each monomer functions independently
CC in ATP generation (By similarity). The dimer consists of 18 different
CC polypeptides: ATP1 (subunit alpha, part of F(1), 3 molecules per
CC monomer), ATP2 (subunit beta, part of F(1), 3 molecules per monomer),
CC ATP3 (subunit gamma, part of the central stalk), ATP4 (subunit b, part
CC of the peripheral stalk), ATP5/OSCP (subunit 5/OSCP, part of the
CC peripheral stalk), ATP6 (subunit a, part of the peripheral stalk), ATP7
CC (subunit d, part of the peripheral stalk), ATP8 (subunit 8, part of the
CC peripheral stalk), OLI1 (subunit c, part of the rotor, 10 molecules per
CC monomer), ATP14 (subunit h, part of the peripheral stalk), ATP15
CC (subunit epsilon, part of the central stalk), ATP16 (subunit delta,
CC part of the central stalk), ATP17 (subunit f, part of the peripheral
CC stalk), ATP18 (subunit i/j, part of the peripheral stalk)
CC (PubMed:27791192, PubMed:25759169). Dimer-specific subunits are ATP19
CC (subunit k, at interface between monomers), ATP20 (subunit g, at
CC interface between monomers), TIM11 (subunit e, at interface between
CC monomers) (By similarity). Also contains subunit L (PubMed:25759169).
CC {ECO:0000250|UniProtKB:B5FVG3, ECO:0000269|PubMed:25759169,
CC ECO:0000269|PubMed:27791192}.
CC -!- SUBCELLULAR LOCATION: Mitochondrion inner membrane
CC {ECO:0000305|PubMed:27791192}; Single-pass membrane protein
CC {ECO:0000255}. Note=The F-type ATP synthase complex is anchored in the
CC mitochondrial inner membrane via the F(0) domain with the F(1) domain
CC and the peripheral stalk extending into the mitochondrial matrix.
CC {ECO:0000305|PubMed:27791192}.
CC -!- MASS SPECTROMETRY: Mass=9987; Method=MALDI;
CC Evidence={ECO:0000269|PubMed:25759169};
CC -!- SIMILARITY: Belongs to the ATPase e subunit family. {ECO:0000305}.
CC ---------------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC ---------------------------------------------------------------------------
DR AlphaFoldDB; C0HK61; -.
DR SMR; C0HK61; -.
DR iPTMnet; C0HK61; -.
DR GO; GO:0016021; C:integral component of membrane; IEA:UniProtKB-KW.
DR GO; GO:0000276; C:mitochondrial proton-transporting ATP synthase complex, coupling factor F(o); IEA:InterPro.
DR GO; GO:0015078; F:proton transmembrane transporter activity; IEA:InterPro.
DR GO; GO:0015986; P:proton motive force-driven ATP synthesis; IEA:InterPro.
DR InterPro; IPR008386; ATP_synth_F0_esu_mt.
DR Pfam; PF05680; ATP-synt_E; 1.
PE 1: Evidence at protein level;
KW Acetylation; ATP synthesis; CF(0); Direct protein sequencing;
KW Hydrogen ion transport; Ion transport; Membrane; Mitochondrion;
KW Mitochondrion inner membrane; Transmembrane; Transmembrane helix;
KW Transport.
FT CHAIN 1..89
FT /note="ATP synthase subunit e, mitochondrial"
FT /evidence="ECO:0000269|Ref.1"
FT /id="PRO_0000445319"
FT TRANSMEM 8..25
FT /note="Helical"
FT /evidence="ECO:0000255"
FT MOD_RES 1
FT /note="N-acetylserine"
FT /evidence="ECO:0000269|PubMed:25759169"
SQ SEQUENCE 89 AA; 9945 MW; 3173CEE9C3136B85 CRC64;
STLNVLRYSS LAAGIVYGAY HTYTLKLEGE KKQELYDYQK KLKLVEAAKA EYRKLNPPKQ
AASTEAVNLD DPEFDFGKFI LGAVEKLGS