AB36G_ARATH
ID AB36G_ARATH Reviewed; 1469 AA.
AC Q9XIE2; Q8VXW5;
DT 16-MAY-2006, integrated into UniProtKB/Swiss-Prot.
DT 01-NOV-1999, sequence version 1.
DT 03-AUG-2022, entry version 157.
DE RecName: Full=ABC transporter G family member 36 {ECO:0000303|PubMed:18299247};
DE Short=ABC transporter ABCG.36 {ECO:0000303|PubMed:18299247};
DE Short=AtABCG36 {ECO:0000303|PubMed:18299247};
DE AltName: Full=Pleiotropic drug resistance protein 8 {ECO:0000303|PubMed:12430018, ECO:0000303|PubMed:16415066, ECO:0000303|PubMed:16506311};
DE Short=AtPDR8 {ECO:0000303|PubMed:23815470};
DE AltName: Full=Protein PENETRATION 3 {ECO:0000303|PubMed:16473969};
GN Name=ABCG36 {ECO:0000303|PubMed:18299247};
GN Synonyms=PDR8 {ECO:0000303|PubMed:12430018, ECO:0000303|PubMed:16415066,
GN ECO:0000303|PubMed:16506311}, PEN3 {ECO:0000303|PubMed:16473969};
GN OrderedLocusNames=At1g59870 {ECO:0000312|Araport:AT1G59870};
GN ORFNames=F23H11.19 {ECO:0000312|EMBL:AAD39329.1};
OS Arabidopsis thaliana (Mouse-ear cress).
OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC Spermatophyta; Magnoliopsida; eudicotyledons; Gunneridae; Pentapetalae;
OC rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis.
OX NCBI_TaxID=3702;
RN [1]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC STRAIN=cv. Columbia;
RX PubMed=11130712; DOI=10.1038/35048500;
RA Theologis A., Ecker J.R., Palm C.J., Federspiel N.A., Kaul S., White O.,
RA Alonso J., Altafi H., Araujo R., Bowman C.L., Brooks S.Y., Buehler E.,
RA Chan A., Chao Q., Chen H., Cheuk R.F., Chin C.W., Chung M.K., Conn L.,
RA Conway A.B., Conway A.R., Creasy T.H., Dewar K., Dunn P., Etgu P.,
RA Feldblyum T.V., Feng J.-D., Fong B., Fujii C.Y., Gill J.E., Goldsmith A.D.,
RA Haas B., Hansen N.F., Hughes B., Huizar L., Hunter J.L., Jenkins J.,
RA Johnson-Hopson C., Khan S., Khaykin E., Kim C.J., Koo H.L.,
RA Kremenetskaia I., Kurtz D.B., Kwan A., Lam B., Langin-Hooper S., Lee A.,
RA Lee J.M., Lenz C.A., Li J.H., Li Y.-P., Lin X., Liu S.X., Liu Z.A.,
RA Luros J.S., Maiti R., Marziali A., Militscher J., Miranda M., Nguyen M.,
RA Nierman W.C., Osborne B.I., Pai G., Peterson J., Pham P.K., Rizzo M.,
RA Rooney T., Rowley D., Sakano H., Salzberg S.L., Schwartz J.R., Shinn P.,
RA Southwick A.M., Sun H., Tallon L.J., Tambunga G., Toriumi M.J., Town C.D.,
RA Utterback T., Van Aken S., Vaysberg M., Vysotskaia V.S., Walker M., Wu D.,
RA Yu G., Fraser C.M., Venter J.C., Davis R.W.;
RT "Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana.";
RL Nature 408:816-820(2000).
RN [2]
RP GENOME REANNOTATION.
RC STRAIN=cv. Columbia;
RX PubMed=27862469; DOI=10.1111/tpj.13415;
RA Cheng C.Y., Krishnakumar V., Chan A.P., Thibaud-Nissen F., Schobel S.,
RA Town C.D.;
RT "Araport11: a complete reannotation of the Arabidopsis thaliana reference
RT genome.";
RL Plant J. 89:789-804(2017).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 844-1469.
RC STRAIN=cv. Columbia;
RX PubMed=14593172; DOI=10.1126/science.1088305;
RA Yamada K., Lim J., Dale J.M., Chen H., Shinn P., Palm C.J., Southwick A.M.,
RA Wu H.C., Kim C.J., Nguyen M., Pham P.K., Cheuk R.F., Karlin-Newmann G.,
RA Liu S.X., Lam B., Sakano H., Wu T., Yu G., Miranda M., Quach H.L.,
RA Tripp M., Chang C.H., Lee J.M., Toriumi M.J., Chan M.M., Tang C.C.,
RA Onodera C.S., Deng J.M., Akiyama K., Ansari Y., Arakawa T., Banh J.,
RA Banno F., Bowser L., Brooks S.Y., Carninci P., Chao Q., Choy N., Enju A.,
RA Goldsmith A.D., Gurjal M., Hansen N.F., Hayashizaki Y., Johnson-Hopson C.,
RA Hsuan V.W., Iida K., Karnes M., Khan S., Koesema E., Ishida J., Jiang P.X.,
RA Jones T., Kawai J., Kamiya A., Meyers C., Nakajima M., Narusaka M.,
RA Seki M., Sakurai T., Satou M., Tamse R., Vaysberg M., Wallender E.K.,
RA Wong C., Yamamura Y., Yuan S., Shinozaki K., Davis R.W., Theologis A.,
RA Ecker J.R.;
RT "Empirical analysis of transcriptional activity in the Arabidopsis
RT genome.";
RL Science 302:842-846(2003).
RN [4]
RP IDENTIFICATION, TISSUE SPECIFICITY, AND INDUCTION.
RX PubMed=12430018; DOI=10.1007/s00425-002-0889-z;
RA van den Brule S., Smart C.C.;
RT "The plant PDR family of ABC transporters.";
RL Planta 216:95-106(2002).
RN [5]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-43 AND SER-45, AND
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC STRAIN=cv. La-0;
RX PubMed=14506206; DOI=10.1074/mcp.t300006-mcp200;
RA Nuehse T.S., Stensballe A., Jensen O.N., Peck S.C.;
RT "Large-scale analysis of in vivo phosphorylated membrane proteins by
RT immobilized metal ion affinity chromatography and mass spectrometry.";
RL Mol. Cell. Proteomics 2:1234-1243(2003).
RN [6]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-43 AND SER-45, AND
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=15308754; DOI=10.1105/tpc.104.023150;
RA Nuehse T.S., Stensballe A., Jensen O.N., Peck S.C.;
RT "Phosphoproteomics of the Arabidopsis plasma membrane and a new
RT phosphorylation site database.";
RL Plant Cell 16:2394-2405(2004).
RN [7]
RP GENE FAMILY, AND NOMENCLATURE.
RX PubMed=16506311; DOI=10.1016/j.febslet.2005.12.043;
RA Crouzet J., Trombik T., Fraysse A.S., Boutry M.;
RT "Organization and function of the plant pleiotropic drug resistance ABC
RT transporter family.";
RL FEBS Lett. 580:1123-1130(2006).
RN [8]
RP FUNCTION.
RX PubMed=16732289; DOI=10.1038/ng1806;
RA Consonni C., Humphry M.E., Hartmann H.A., Livaja M., Durner J.,
RA Westphal L., Vogel J., Lipka V., Kemmerling B., Schulze-Lefert P.,
RA Somerville S.C., Panstruga R.;
RT "Conserved requirement for a plant host cell protein in powdery mildew
RT pathogenesis.";
RL Nat. Genet. 38:716-720(2006).
RN [9]
RP FUNCTION, MUTAGENESIS OF GLY-354 AND GLY-915, DISRUPTION PHENOTYPE,
RP INDUCTION, AND SUBCELLULAR LOCATION.
RX PubMed=16473969; DOI=10.1105/tpc.105.038372;
RA Stein M., Dittgen J., Sanchez-Rodriguez C., Hou B.-H., Molina A.,
RA Schulze-Lefert P., Lipka V., Somerville S.;
RT "Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to
RT nonhost resistance to inappropriate pathogens that enter by direct
RT penetration.";
RL Plant Cell 18:731-746(2006).
RN [10]
RP FUNCTION, DISRUPTION PHENOTYPE, SUBCELLULAR LOCATION, INDUCTION, AND TISSUE
RP SPECIFICITY.
RX PubMed=16415066; DOI=10.1093/pcp/pcj001;
RA Kobae Y., Sekino T., Yoshioka H., Nakagawa T., Martinoia E., Maeshima M.;
RT "Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana,
RT causes hypersensitive cell death upon pathogen infection.";
RL Plant Cell Physiol. 47:309-318(2006).
RN [11]
RP FUNCTION, TISSUE SPECIFICITY, SUBCELLULAR LOCATION, AND INDUCTION BY
RP CADMIUM AND LEAD.
RX PubMed=17355438; DOI=10.1111/j.1365-313x.2007.03044.x;
RA Kim D.-Y., Bovet L., Maeshima M., Martinoia E., Lee Y.;
RT "The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy
RT metal resistance.";
RL Plant J. 50:207-218(2007).
RN [12]
RP GENE FAMILY, AND NOMENCLATURE.
RX PubMed=18299247; DOI=10.1016/j.tplants.2008.02.001;
RA Verrier P.J., Bird D., Burla B., Dassa E., Forestier C., Geisler M.,
RA Klein M., Kolukisaoglu H.U., Lee Y., Martinoia E., Murphy A., Rea P.A.,
RA Samuels L., Schulz B., Spalding E.J., Yazaki K., Theodoulou F.L.;
RT "Plant ABC proteins - a unified nomenclature and updated inventory.";
RL Trends Plant Sci. 13:151-159(2008).
RN [13]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC STRAIN=cv. Columbia;
RX PubMed=19245862; DOI=10.1016/j.jprot.2009.02.004;
RA Jones A.M.E., MacLean D., Studholme D.J., Serna-Sanz A., Andreasson E.,
RA Rathjen J.P., Peck S.C.;
RT "Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis
RT thaliana.";
RL J. Proteomics 72:439-451(2009).
RN [14]
RP FUNCTION, MUTAGENESIS OF ALA-1357, DISRUPTION PHENOTYPE, TISSUE
RP SPECIFICITY, AND SUBCELLULAR LOCATION.
RC STRAIN=cv. Columbia;
RX PubMed=19648296; DOI=10.1105/tpc.109.065821;
RA Strader L.C., Bartel B.;
RT "The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette
RT transporter modulates sensitivity to the auxin precursor indole-3-butyric
RT acid.";
RL Plant Cell 21:1992-2007(2009).
RN [15]
RP FUNCTION, SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
RX PubMed=19000165; DOI=10.1111/j.1365-313x.2008.03743.x;
RA Meyer D., Pajonk S., Micali C., O'Connell R., Schulze-Lefert P.;
RT "Extracellular transport and integration of plant secretory proteins into
RT pathogen-induced cell wall compartments.";
RL Plant J. 57:986-999(2009).
RN [16]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19376835; DOI=10.1104/pp.109.138677;
RA Reiland S., Messerli G., Baerenfaller K., Gerrits B., Endler A.,
RA Grossmann J., Gruissem W., Baginsky S.;
RT "Large-scale Arabidopsis phosphoproteome profiling reveals novel
RT chloroplast kinase substrates and phosphorylation networks.";
RL Plant Physiol. 150:889-903(2009).
RN [17]
RP FUNCTION.
RX PubMed=19095898; DOI=10.1126/science.1164627;
RA Clay N.K., Adio A.M., Denoux C., Jander G., Ausubel F.M.;
RT "Glucosinolate metabolites required for an Arabidopsis innate immune
RT response.";
RL Science 323:95-101(2009).
RN [18]
RP SUBCELLULAR LOCATION.
RX PubMed=20451385; DOI=10.1016/j.cub.2010.03.059;
RA Langowski L., Ruzicka K., Naramoto S., Kleine-Vehn J., Friml J.;
RT "Trafficking to the outer polar domain defines the root-soil interface.";
RL Curr. Biol. 20:904-908(2010).
RN [19]
RP FUNCTION, AND DISRUPTION PHENOTYPE.
RC STRAIN=cv. Columbia;
RX PubMed=20088904; DOI=10.1111/j.1399-3054.2010.01353.x;
RA Kim D.-Y., Jin J.-Y., Alejandro S., Martinoia E., Lee Y.;
RT "Overexpression of AtABCG36 improves drought and salt stress resistance in
RT Arabidopsis.";
RL Physiol. Plantarum 139:170-180(2010).
RN [20]
RP FUNCTION, DISRUPTION PHENOTYPE, AND INDUCTION BY COLLETOTRICHUM
RP GLOEOSPORIOIDES.
RX PubMed=20605856; DOI=10.1105/tpc.110.074344;
RA Hiruma K., Onozawa-Komori M., Takahashi F., Asakura M., Bednarek P.,
RA Okuno T., Schulze-Lefert P., Takano Y.;
RT "Entry mode-dependent function of an indole glucosinolate pathway in
RT Arabidopsis for nonhost resistance against anthracnose pathogens.";
RL Plant Cell 22:2429-2443(2010).
RN [21]
RP FUNCTION, DISRUPTION PHENOTYPE, AND SUBCELLULAR LOCATION.
RC STRAIN=cv. Columbia;
RX PubMed=20498067; DOI=10.1073/pnas.1005878107;
RA Ruzicka K., Strader L.C., Bailly A., Yang H., Blakeslee J., Langowski L.,
RA Nejedla E., Fujita H., Itoh H., Syono K., Hejatko J., Gray W.M.,
RA Martinoia E., Geisler M., Bartel B., Murphy A.S., Friml J.;
RT "Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds
RT including the auxin precursor indole-3-butyric acid.";
RL Proc. Natl. Acad. Sci. U.S.A. 107:10749-10753(2010).
RN [22]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, AND IDENTIFICATION BY MASS
RP SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=22223895; DOI=10.1074/mcp.m111.015131;
RA Bienvenut W.V., Sumpton D., Martinez A., Lilla S., Espagne C., Meinnel T.,
RA Giglione C.;
RT "Comparative large-scale characterisation of plant vs. mammal proteins
RT reveals similar and idiosyncratic N-alpha acetylation features.";
RL Mol. Cell. Proteomics 11:M111.015131-M111.015131(2012).
RN [23]
RP FUNCTION, DISRUPTION PHENOTYPE, AND INDUCTION BY PSEUDOMONAS SYRINGAE AND
RP FLG22.
RC STRAIN=cv. Columbia;
RX PubMed=23815470; DOI=10.1094/mpmi-11-12-0262-r;
RA Xin X.-F., Nomura K., Underwood W., He S.Y.;
RT "Induction and suppression of PEN3 focal accumulation during Pseudomonas
RT syringae pv. tomato DC3000 infection of Arabidopsis.";
RL Mol. Plant Microbe Interact. 26:861-867(2013).
RN [24]
RP INDUCTION BY PATHOGENS, TISSUE SPECIFICITY, AND SUBCELLULAR LOCATION.
RC STRAIN=cv. Columbia;
RX PubMed=23836668; DOI=10.1073/pnas.1218701110;
RA Underwood W., Somerville S.C.;
RT "Perception of conserved pathogen elicitors at the plasma membrane leads to
RT relocalization of the Arabidopsis PEN3 transporter.";
RL Proc. Natl. Acad. Sci. U.S.A. 110:12492-12497(2013).
RN [25]
RP FUNCTION, DISRUPTION PHENOTYPE, AND INDUCTION BY PATHOGENS.
RC STRAIN=cv. Columbia;
RX PubMed=24889055; DOI=10.1111/tpj.12571;
RA Johansson O.N., Fantozzi E., Fahlberg P., Nilsson A.K., Buhot N., Toer M.,
RA Andersson M.X.;
RT "Role of the penetration-resistance genes PEN1, PEN2 and PEN3 in the
RT hypersensitive response and race-specific resistance in Arabidopsis
RT thaliana.";
RL Plant J. 79:466-476(2014).
RN [26]
RP REVIEW ON PHYTOHORMONE TRANSPORT.
RX PubMed=26517905; DOI=10.1042/bst20150106;
RA Borghi L., Kang J., Ko D., Lee Y., Martinoia E.;
RT "The role of ABCG-type ABC transporters in phytohormone transport.";
RL Biochem. Soc. Trans. 43:924-930(2015).
RN [27]
RP FUNCTION, DISRUPTION PHENOTYPE, AND MUTAGENESIS OF GLY-354; LEU-704;
RP GLY-915 AND ALA-1357.
RC STRAIN=cv. Columbia, and cv. Columbia GL1;
RX PubMed=26023163; DOI=10.1104/pp.15.00182;
RA Lu X., Dittgen J., Pislewska-Bednarek M., Molina A., Schneider B.,
RA Svatos A., Doubsky J., Schneeberger K., Weigel D., Bednarek P.,
RA Schulze-Lefert P.;
RT "Mutant allele-specific uncoupling of PENETRATION3 functions reveals
RT engagement of the ATP-binding cassette transporter in distinct tryptophan
RT metabolic pathways.";
RL Plant Physiol. 168:814-827(2015).
RN [28]
RP FUNCTION, DISRUPTION PHENOTYPE, PHOSPHORYLATION, INTERACTION WITH CAM3;
RP CAM7; CML8; CML9; CML12/CAL4; CML37; CML38; CBL4/SOS3 AND KIC, AND
RP SUBCELLULAR LOCATION.
RC STRAIN=cv. Columbia;
RX PubMed=26315018; DOI=10.1111/nph.13582;
RA Campe R., Langenbach C., Leissing F., Popescu G.V., Popescu S.C.,
RA Goellner K., Beckers G.J., Conrath U.;
RT "ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like
RT PEN3, is required for Arabidopsis nonhost resistance.";
RL New Phytol. 209:294-306(2016).
RN [29]
RP SUBCELLULAR LOCATION, AND TISSUE SPECIFICITY.
RC STRAIN=cv. Columbia;
RX PubMed=27803190; DOI=10.1104/pp.16.01252;
RA Mao H., Nakamura M., Viotti C., Grebe M.;
RT "A framework for lateral membrane trafficking and polar tethering of the
RT PEN3 ATP-binding cassette transporter.";
RL Plant Physiol. 172:2245-2260(2016).
RN [30]
RP FUNCTION, AND SUBCELLULAR LOCATION.
RC STRAIN=cv. Columbia;
RX PubMed=28434950; DOI=10.1016/j.molp.2017.04.003;
RA Underwood W., Ryan A., Somerville S.C.;
RT "An Arabidopsis lipid flippase is required for timely recruitment of
RT defenses to the host-pathogen interface at the plant cell surface.";
RL Mol. Plant 10:805-820(2017).
RN [31]
RP FUNCTION, DISRUPTION PHENOTYPE, AND SUBCELLULAR LOCATION.
RC STRAIN=cv. Columbia;
RX PubMed=29085068; DOI=10.1038/s41477-017-0039-z;
RA Mao H., Aryal B., Langenecker T., Hagmann J., Geisler M., Grebe M.;
RT "Arabidopsis BTB/POZ protein-dependent PENETRATION3 trafficking and disease
RT susceptibility.";
RL Nat. Plants 3:854-858(2017).
RN [32]
RP REVIEW.
RX PubMed=28010187; DOI=10.1080/15592324.2016.1274481;
RA Klink V.P., Sharma K., Pant S.R., McNeece B., Niraula P., Lawrence G.W.;
RT "Components of the SNARE-containing regulon are co-regulated in root cells
RT undergoing defense.";
RL Plant Signal. Behav. 12:e1274481-e1274481(2017).
RN [33]
RP PHOSPHORYLATION, MUTAGENESIS OF SER-37; SER-38; SER-40; THR-43; SER-45;
RP SER-825 AND SER-844, PHOSPHORYLATION AT SER-37; SER-38; SER-40; THR-43;
RP SER-45; SER-825; SER-841 AND SER-844, AND SUBCELLULAR LOCATION.
RX PubMed=28910579; DOI=10.1080/15592324.2017.1379644;
RA Underwood W., Somerville S.C.;
RT "Phosphorylation is required for the pathogen defense function of the
RT Arabidopsis PEN3 ABC transporter.";
RL Plant Signal. Behav. 12:e1379644-e1379644(2017).
RN [34]
RP FUNCTION, AND DISRUPTION PHENOTYPE.
RC STRAIN=cv. Columbia;
RX PubMed=28623273; DOI=10.1038/s41598-017-03250-6;
RA Ziegler J., Schmidt S., Strehmel N., Scheel D., Abel S.;
RT "Arabidopsis transporter ABCG37/PDR9 contributes primarily highly
RT oxygenated coumarins to root exudation.";
RL Sci. Rep. 7:3704-3704(2017).
RN [35]
RP FUNCTION, AND DEVELOPMENTAL STAGE.
RX PubMed=28921082; DOI=10.1007/s10265-017-0979-4;
RA Takeuchi M., Kegasa T., Watanabe A., Tamura M., Tsutsumi Y.;
RT "Expression analysis of transporter genes for screening candidate
RT monolignol transporters using Arabidopsis thaliana cell suspensions during
RT tracheary element differentiation.";
RL J. Plant Res. 131:297-305(2018).
CC -!- FUNCTION: Together with ABCG37, regulates auxin homeostasis and
CC responses by playing a dual role in coumarine (e.g. esculin) and in the
CC auxin precursor indole 3-butyric acid (IBA) efflux transport, thus
CC influencing cotyledons, roots and root hairs development
CC (PubMed:26517905, PubMed:19648296, PubMed:28623273, PubMed:20498067).
CC Mediates the transport (export into the apoplast) of distinct indole-
CC type metabolites in distinct biological processes; a precursor of 4-O-
CC beta-D-glucosyl-indol-3-yl formamide (4OGlcI3F), a pathogen-inducible
CC tryptophan-derived compound (e.g. upon Blumeria graminis conidiospore
CC inoculation), being a probable substrate in extracellular pathogen
CC defense (PubMed:26023163). Involved in the cellular detoxification of
CC xenobiotics by promoting the excretion of some auxinic herbicides
CC including 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB) and other
CC members of the phenoxyalkanoic acid family but not 2,4-
CC dichlorophenoxyacetic acid (2,4-D) (PubMed:20498067). Mediates
CC thymidine exudation in the rhizosphere (PubMed:28623273). May be a
CC transporter of lignin precursors during tracheary element
CC differentiation (PubMed:28921082). Key factor that controls the extent
CC of cell death in the defense response (PubMed:24889055). Necessary for
CC both callose deposition and glucosinolate activation in response to
CC pathogens (PubMed:23815470, PubMed:26023163). As a central component of
CC nonhost resistance (NHR), required for limiting invasion by nonadapted
CC pathogens including powdery mildews (e.g. Blumeria graminis and
CC Erysiphe pisi), root-penetrating pathogenic fungi (e.g. Fusarium
CC oxysporum), Phakopsora pachyrhizi and Colletotrichum gloeosporioides
CC (anthracnose fungi), probably by sensing Ca(2+) via interactions with
CC calmodulins (e.g. CaM7) (PubMed:20605856, PubMed:24889055,
CC PubMed:26023163, PubMed:26315018, PubMed:29085068). Confers resistance
CC to cadmium (Cd) and lead (Pb), probably as an efflux pump of Cd2+ or Cd
CC conjugates, and possibly, of chemicals that mediate pathogen
CC resistance. Promotes resistance to abiotic stresses (e.g. drought and
CC salt stress) and favors general growth by preventing sodium
CC accumulation in plants (PubMed:20088904). Required for microbe-
CC associated molecular patterns (MAMPs)- and salicylic acid (SA)-
CC dependent hypersensitive cell death (HR), involving indole
CC glucosinolate breakdown products (e.g. indole-3-acetonitrile), probably
CC in a PEN2 myrosinase-dependent metabolic pathway, triggered by the
CC recognition of effectors from incompatible pathogens including
CC oomycetes and bacteria (e.g. AvrRpm1 and AvrRps4) and
CC benzothiadiazole- (BTH), and leading to an induced protection against
CC pathogens (e.g. Pseudomonas syringae pv. tomato DC3000, Golovinomyces
CC orontii and Hyaloperonospora arabidopsidis) (PubMed:23815470,
CC PubMed:24889055, PubMed:26023163, PubMed:28434950).
CC {ECO:0000269|PubMed:16415066, ECO:0000269|PubMed:16473969,
CC ECO:0000269|PubMed:16732289, ECO:0000269|PubMed:17355438,
CC ECO:0000269|PubMed:19000165, ECO:0000269|PubMed:19095898,
CC ECO:0000269|PubMed:19648296, ECO:0000269|PubMed:20088904,
CC ECO:0000269|PubMed:20498067, ECO:0000269|PubMed:20605856,
CC ECO:0000269|PubMed:23815470, ECO:0000269|PubMed:24889055,
CC ECO:0000269|PubMed:26023163, ECO:0000269|PubMed:26315018,
CC ECO:0000269|PubMed:28434950, ECO:0000269|PubMed:28623273,
CC ECO:0000269|PubMed:28921082, ECO:0000269|PubMed:29085068,
CC ECO:0000303|PubMed:26517905}.
CC -!- SUBUNIT: Interacts, in a Ca(2+)-dependent manner, with calmodulins
CC CaM3, CaM7 and several CaM-like proteins (CML8, CML9, CML12/CAL4, CML37
CC and CML38), as well as with calcium regulated proteins CBL4/SOS3 and
CC KIC. {ECO:0000269|PubMed:26315018}.
CC -!- SUBCELLULAR LOCATION: Cell membrane {ECO:0000269|PubMed:16415066,
CC ECO:0000269|PubMed:16473969, ECO:0000269|PubMed:17355438,
CC ECO:0000269|PubMed:19000165, ECO:0000269|PubMed:19648296,
CC ECO:0000269|PubMed:20451385, ECO:0000269|PubMed:20498067,
CC ECO:0000269|PubMed:23836668, ECO:0000269|PubMed:26315018,
CC ECO:0000269|PubMed:27803190, ECO:0000269|PubMed:28910579,
CC ECO:0000269|PubMed:29085068}; Multi-pass membrane protein
CC {ECO:0000269|PubMed:16415066, ECO:0000269|PubMed:16473969,
CC ECO:0000269|PubMed:17355438, ECO:0000269|PubMed:19000165}. Golgi
CC apparatus, trans-Golgi network membrane {ECO:0000269|PubMed:27803190,
CC ECO:0000269|PubMed:28434950}; Multi-pass membrane protein
CC {ECO:0000255}. Endoplasmic reticulum membrane
CC {ECO:0000269|PubMed:29085068}; Multi-pass membrane protein
CC {ECO:0000255}. Note=Constitutively present and uniformly distributed
CC throughout the plasma membrane in both leaves epidermal and mesophyll
CC cells of plants in normal conditions (PubMed:23836668,
CC PubMed:28910579). Polarized localization at the outermost side of root
CC epidermal and cap cells, in the outer lateral membrane domain facing
CC the environment; the trafficking and endocytic recycling between the
CC endoplasmic reticulum, the trans-Golgi network and the plasma membrane
CC is ACT7-, EAP3- and ALA3-dependent, but the polar localization to the
CC outer lateral membrane domain requires EXO84B (PubMed:20451385,
CC PubMed:27803190, PubMed:28434950, PubMed:29085068, PubMed:20498067).
CC Incorporated transiently at the host-pathogen interface or into
CC pathogen-induced papillae and haustorial encasement structures outside
CC of the plasma membrane upon infection with a pathogen, in an actin-
CC dependent manner; this translocation seems not regulated by
CC phosphorylation (PubMed:23836668, PubMed:28434950, PubMed:29085068,
CC PubMed:28910579). {ECO:0000269|PubMed:20451385,
CC ECO:0000269|PubMed:20498067, ECO:0000269|PubMed:23836668,
CC ECO:0000269|PubMed:27803190, ECO:0000269|PubMed:28434950,
CC ECO:0000269|PubMed:28910579, ECO:0000269|PubMed:29085068}.
CC -!- TISSUE SPECIFICITY: Ubiquitous (at protein level). Higher levels in
CC root hairs, stomata, epidermal cells, and hydathodes. Concentrated at
CC the infection site of infected plants, including papillae and haustoria
CC (PubMed:23836668). Accumulates at the periphery of lateral root cap and
CC root epidermal cells, especially in the outer lateral membrane domain
CC facing the environment (PubMed:19648296, PubMed:27803190).
CC {ECO:0000269|PubMed:12430018, ECO:0000269|PubMed:16415066,
CC ECO:0000269|PubMed:17355438, ECO:0000269|PubMed:19000165,
CC ECO:0000269|PubMed:19648296, ECO:0000269|PubMed:23836668,
CC ECO:0000269|PubMed:27803190}.
CC -!- DEVELOPMENTAL STAGE: Accumulates during tracheary element
CC differentiation. {ECO:0000269|PubMed:28921082}.
CC -!- INDUCTION: Induced by cycloheximide (CHX), cold/dark treatment,
CC cadmium, lead, sclareol and sclareolide. Repressed by abscisic acid
CC (ABA). Induced by infection of avirulent and virulent bacterial
CC pathogens (Pseudomonas syringae pv. tomato with or without avrRpt2,
CC avrRpm1 or avrRps4, respectively) and fungal pathogens (e.g.
CC Colletotrichum gloeosporioides) (PubMed:20605856, PubMed:23815470,
CC PubMed:23836668, PubMed:24889055). Strong focal but transient
CC accumulation outside of the plasma membrane within papillae or at the
CC host-pathogen interface, in response to pathogens and in the presence
CC of pathogen-associated molecular patterns (PAMPs) such as flagellin-
CC derived peptides (e.g. flg22 and elf18), and cell walls of fungal
CC pathogens and insect pests derived molecules (e.g. hydrolyzed chitin);
CC this focal accumulation requires actin and is suppressed by the
CC bacterial effector AvrPto (PubMed:23815470, PubMed:23836668).
CC {ECO:0000269|PubMed:12430018, ECO:0000269|PubMed:16415066,
CC ECO:0000269|PubMed:16473969, ECO:0000269|PubMed:17355438,
CC ECO:0000269|PubMed:20605856, ECO:0000269|PubMed:23815470,
CC ECO:0000269|PubMed:23836668, ECO:0000269|PubMed:24889055}.
CC -!- PTM: Phosphorylated upon perception of pathogen-associated molecular
CC patterns (PAMPs); phosphorylations at Ser-40 and Ser-45, which likely
CC regulate transport activity, are required for plant defense against
CC pathogens (e.g. Blumeria graminis), but dispensable for recruitment to
CC the host-pathogen interface and penetration sites (PubMed:26315018,
CC PubMed:28910579). Phosphorylation at Ser-841 seems to be required for
CC protein stability (PubMed:28910579). {ECO:0000269|PubMed:28910579,
CC ECO:0000303|PubMed:26315018}.
CC -!- DISRUPTION PHENOTYPE: Defects in efflux of the auxin precursor indole-
CC 3-butyric acid (IBA) associated with developmental defects such as
CC abnormally long root hairs, increased lateral root production and
CC larger cotyledon expansion (PubMed:19648296, PubMed:20498067). Reduced
CC thymidine and coumarin (e.g. scopolin) exudation in the rhizosphere
CC (PubMed:28623273). Overaccumulation in leaves of 4-O-beta-D-glucosyl-
CC indol-3-yl formamide (4OGlcI3F) upon Blumeria graminis conidiospore
CC inoculation, a pathogen-inducible tryptophan-derived compound, which
CC biosynthesis is dependent on the PEN2 metabolic pathway
CC (PubMed:26023163). Reduced shoot fresh weight (PubMed:20088904). Less
CC sensitive to compatible pathogens (Pseudomonas syringae pv tomato) due
CC to accelerated cell death and lesion formation (PubMed:16415066,
CC PubMed:16473969). Decreased hypersensitive cell death (HR) triggered by
CC the recognition of effectors from oomycete and bacterial pathogens,
CC thus leading to a compromised resistance to incompatible pathogen (e.g.
CC P.syringae pv. tomato DC3000 and Hyaloperonospora arabidopsidis)
CC (PubMed:23815470, PubMed:24889055). Increased susceptibility to the
CC necrotrophic pathogen Plectosphaerella cucumerina (PubMed:26023163).
CC Increased sensitivity to the root-penetrating pathogenic fungus
CC Fusarium oxysporum (PubMed:29085068). Extensive leaf chlorosis and
CC reduced fungal growth upon infection by the host-adapted pathogen
CC Golovinomyces orontii associated with an hyperaccumulation of both free
CC and total salicylic acid (SA) as well as pathogen-inducible hydrogen
CC peroxides in leaves (PubMed:26023163). Impaired microbe-associated
CC molecular patterns (MAMPs)-induced (e.g. flg22) callose deposition
CC (PubMed:26023163). Hypersensitivity to root growth inhibition by IBA
CC and 2,4-dichlorophenoxybutyric acid (2,4-DB), an analog of IBA
CC (PubMed:19648296, PubMed:26023163, PubMed:20498067). Higher sensitivity
CC to drought stress (PubMed:20088904). Increased sensitivity to the non
CC adapted fungal pathogen Colletotrichum gloeosporioides and to powdery
CC mildews (e.g. Blumeria graminis and Erysiphe pisi) probably due to the
CC reduction of preinvasion plant defenses upon appressoria formation and
CC leading to lesions at infection sites (PubMed:20605856,
CC PubMed:26023163). {ECO:0000269|PubMed:16415066,
CC ECO:0000269|PubMed:16473969, ECO:0000269|PubMed:19648296,
CC ECO:0000269|PubMed:20088904, ECO:0000269|PubMed:20498067,
CC ECO:0000269|PubMed:20605856, ECO:0000269|PubMed:23815470,
CC ECO:0000269|PubMed:24889055, ECO:0000269|PubMed:26023163,
CC ECO:0000269|PubMed:28623273, ECO:0000269|PubMed:29085068}.
CC -!- SIMILARITY: Belongs to the ABC transporter superfamily. ABCG family.
CC PDR (TC 3.A.1.205) subfamily. {ECO:0000305}.
CC ---------------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC ---------------------------------------------------------------------------
DR EMBL; AC007258; AAD39329.1; -; Genomic_DNA.
DR EMBL; CP002684; AEE33632.1; -; Genomic_DNA.
DR EMBL; AY074515; AAL67129.1; -; mRNA.
DR EMBL; BK001007; DAA00876.1; -; Genomic_DNA.
DR PIR; H96622; H96622.
DR RefSeq; NP_176196.1; NM_104680.3.
DR AlphaFoldDB; Q9XIE2; -.
DR SMR; Q9XIE2; -.
DR BioGRID; 27506; 33.
DR STRING; 3702.AT1G59870.1; -.
DR TCDB; 3.A.1.205.9; the atp-binding cassette (abc) superfamily.
DR iPTMnet; Q9XIE2; -.
DR MetOSite; Q9XIE2; -.
DR SwissPalm; Q9XIE2; -.
DR PaxDb; Q9XIE2; -.
DR PRIDE; Q9XIE2; -.
DR ProteomicsDB; 243272; -.
DR EnsemblPlants; AT1G59870.1; AT1G59870.1; AT1G59870.
DR GeneID; 842281; -.
DR Gramene; AT1G59870.1; AT1G59870.1; AT1G59870.
DR KEGG; ath:AT1G59870; -.
DR Araport; AT1G59870; -.
DR TAIR; locus:2025931; AT1G59870.
DR eggNOG; KOG0065; Eukaryota.
DR HOGENOM; CLU_000604_35_6_1; -.
DR InParanoid; Q9XIE2; -.
DR OMA; HVWFRWI; -.
DR OrthoDB; 324553at2759; -.
DR PhylomeDB; Q9XIE2; -.
DR PRO; PR:Q9XIE2; -.
DR Proteomes; UP000006548; Chromosome 1.
DR ExpressionAtlas; Q9XIE2; baseline and differential.
DR Genevisible; Q9XIE2; AT.
DR GO; GO:0009507; C:chloroplast; HDA:TAIR.
DR GO; GO:0009941; C:chloroplast envelope; HDA:TAIR.
DR GO; GO:0005783; C:endoplasmic reticulum; IDA:UniProtKB.
DR GO; GO:0005789; C:endoplasmic reticulum membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0016021; C:integral component of membrane; IEA:UniProtKB-KW.
DR GO; GO:0005739; C:mitochondrion; HDA:TAIR.
DR GO; GO:0000325; C:plant-type vacuole; HDA:TAIR.
DR GO; GO:0005886; C:plasma membrane; IDA:UniProtKB.
DR GO; GO:0005802; C:trans-Golgi network; IDA:UniProtKB.
DR GO; GO:0140359; F:ABC-type transporter activity; IEA:InterPro.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0010329; F:auxin efflux transmembrane transporter activity; IDA:UniProtKB.
DR GO; GO:0015086; F:cadmium ion transmembrane transporter activity; IDA:TAIR.
DR GO; GO:0015562; F:efflux transmembrane transporter activity; IMP:UniProtKB.
DR GO; GO:0003729; F:mRNA binding; IDA:TAIR.
DR GO; GO:0009926; P:auxin polar transport; IMP:UniProtKB.
DR GO; GO:0009734; P:auxin-activated signaling pathway; IEA:UniProtKB-KW.
DR GO; GO:0015691; P:cadmium ion transport; IMP:TAIR.
DR GO; GO:1990748; P:cellular detoxification; IMP:UniProtKB.
DR GO; GO:0071366; P:cellular response to indolebutyric acid stimulus; IMP:UniProtKB.
DR GO; GO:0048825; P:cotyledon development; IMP:UniProtKB.
DR GO; GO:0009804; P:coumarin metabolic process; IMP:UniProtKB.
DR GO; GO:0052544; P:defense response by callose deposition in cell wall; IMP:TAIR.
DR GO; GO:0042742; P:defense response to bacterium; IDA:UniProtKB.
DR GO; GO:0050832; P:defense response to fungus; IDA:UniProtKB.
DR GO; GO:0002229; P:defense response to oomycetes; IMP:UniProtKB.
DR GO; GO:0140352; P:export from cell; IMP:UniProtKB.
DR GO; GO:0042344; P:indole glucosinolate catabolic process; IMP:TAIR.
DR GO; GO:0031348; P:negative regulation of defense response; IMP:TAIR.
DR GO; GO:0140426; P:PAMP-triggered immunity signalling pathway; IDA:UniProtKB.
DR GO; GO:0009626; P:plant-type hypersensitive response; IMP:UniProtKB.
DR GO; GO:0010928; P:regulation of auxin mediated signaling pathway; IMP:UniProtKB.
DR GO; GO:2000071; P:regulation of defense response by callose deposition; IMP:UniProtKB.
DR GO; GO:2000023; P:regulation of lateral root development; IMP:UniProtKB.
DR GO; GO:0009733; P:response to auxin; IMP:UniProtKB.
DR GO; GO:0009617; P:response to bacterium; IEP:UniProtKB.
DR GO; GO:0010200; P:response to chitin; IEP:UniProtKB.
DR GO; GO:0009620; P:response to fungus; IEP:UniProtKB.
DR GO; GO:0009408; P:response to heat; IEP:TAIR.
DR GO; GO:0002237; P:response to molecule of bacterial origin; IDA:UniProtKB.
DR GO; GO:0002238; P:response to molecule of fungal origin; IDA:UniProtKB.
DR GO; GO:0002240; P:response to molecule of oomycetes origin; IMP:UniProtKB.
DR GO; GO:0002239; P:response to oomycetes; IEP:UniProtKB.
DR GO; GO:0009651; P:response to salt stress; IMP:UniProtKB.
DR GO; GO:0009414; P:response to water deprivation; IMP:UniProtKB.
DR GO; GO:0048364; P:root development; IMP:UniProtKB.
DR GO; GO:0080147; P:root hair cell development; IMP:UniProtKB.
DR GO; GO:0055078; P:sodium ion homeostasis; IMP:UniProtKB.
DR GO; GO:0009627; P:systemic acquired resistance; IMP:TAIR.
DR GO; GO:0046104; P:thymidine metabolic process; IMP:UniProtKB.
DR GO; GO:0055085; P:transmembrane transport; IMP:UniProtKB.
DR CDD; cd03233; ABCG_PDR_domain1; 1.
DR CDD; cd03232; ABCG_PDR_domain2; 1.
DR Gene3D; 3.40.50.300; -; 2.
DR InterPro; IPR003593; AAA+_ATPase.
DR InterPro; IPR013525; ABC_2_trans.
DR InterPro; IPR029481; ABC_trans_N.
DR InterPro; IPR003439; ABC_transporter-like_ATP-bd.
DR InterPro; IPR043926; ABCG_dom.
DR InterPro; IPR034001; ABCG_PDR_1.
DR InterPro; IPR034003; ABCG_PDR_2.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR013581; PDR_assoc.
DR Pfam; PF01061; ABC2_membrane; 2.
DR Pfam; PF19055; ABC2_membrane_7; 2.
DR Pfam; PF00005; ABC_tran; 2.
DR Pfam; PF14510; ABC_trans_N; 1.
DR Pfam; PF08370; PDR_assoc; 1.
DR SMART; SM00382; AAA; 2.
DR SUPFAM; SSF52540; SSF52540; 2.
DR PROSITE; PS50893; ABC_TRANSPORTER_2; 2.
PE 1: Evidence at protein level;
KW Acetylation; ATP-binding; Auxin signaling pathway; Cell membrane;
KW Detoxification; Endoplasmic reticulum; Golgi apparatus;
KW Hypersensitive response; Membrane; Nucleotide-binding; Phosphoprotein;
KW Plant defense; Reference proteome; Repeat; Stress response; Transmembrane;
KW Transmembrane helix; Transport.
FT CHAIN 1..1469
FT /note="ABC transporter G family member 36"
FT /id="PRO_0000234635"
FT TRANSMEM 540..560
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 575..595
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 621..641
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 659..679
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 685..705
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 713..733
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 772..792
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 1216..1236
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 1239..1259
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 1299..1319
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 1326..1346
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 1356..1376
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 1384..1404
FT /note="Helical"
FT /evidence="ECO:0000255"
FT TRANSMEM 1441..1461
FT /note="Helical"
FT /evidence="ECO:0000255"
FT DOMAIN 171..444
FT /note="ABC transporter 1"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00434"
FT DOMAIN 522..735
FT /note="ABC transmembrane type-2 1"
FT /evidence="ECO:0000255"
FT DOMAIN 867..1119
FT /note="ABC transporter 2"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00434"
FT DOMAIN 1192..1406
FT /note="ABC transmembrane type-2 2"
FT /evidence="ECO:0000255"
FT REGION 806..852
FT /note="Disordered"
FT /evidence="ECO:0000256|SAM:MobiDB-lite"
FT COMPBIAS 806..828
FT /note="Basic and acidic residues"
FT /evidence="ECO:0000256|SAM:MobiDB-lite"
FT BINDING 204..211
FT /ligand="ATP"
FT /ligand_id="ChEBI:CHEBI:30616"
FT /ligand_label="1"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00434"
FT BINDING 912..919
FT /ligand="ATP"
FT /ligand_id="ChEBI:CHEBI:30616"
FT /ligand_label="2"
FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00434"
FT SITE 354
FT /note="Required for both preinvasive defense to nonadapted
FT powdery mildews and salicylic acid (SA)-, microbe-
FT associated molecular patterns (MAMPs)- dependent defense
FT against host-adapted pathogens, and defense responses
FT toward necrotrophic pathogens. Necessary to prevent the
FT sensitivity to IBA (an auxin precursor)"
FT /evidence="ECO:0000269|PubMed:26023163"
FT SITE 704
FT /note="Required for preinvasive defense to nonadapted
FT powdery mildews but not for salicylic acid (SA)- and
FT microbe-associated molecular patterns (MAMPs)- dependent
FT defense against host-adapted pathogens. Involved in defense
FT responses toward necrotrophic pathogens. Not necessary to
FT prevent the sensitivity to IBA (an auxin precursor)"
FT /evidence="ECO:0000269|PubMed:26023163"
FT SITE 915
FT /note="Required for both preinvasive defense to nonadapted
FT powdery mildews and salicylic acid (SA)-, microbe-
FT associated molecular patterns (MAMPs)- dependent defense
FT against host-adapted pathogens, and defense responses
FT toward necrotrophic pathogens. Necessary to prevent the
FT sensitivity to IBA (an auxin precursor)"
FT /evidence="ECO:0000269|PubMed:26023163"
FT SITE 1357
FT /note="Required for preinvasive defense to nonadapted
FT powdery mildews but not for salicylic acid (SA)- and
FT microbe-associated molecular patterns (MAMPs)- dependent
FT defense against host-adapted pathogens. Necessary to
FT prevent the sensitivity to IBA (an auxin precursor)"
FT /evidence="ECO:0000269|PubMed:26023163"
FT MOD_RES 1
FT /note="N-acetylmethionine"
FT /evidence="ECO:0007744|PubMed:22223895"
FT MOD_RES 37
FT /note="Phosphoserine"
FT /evidence="ECO:0000269|PubMed:28910579"
FT MOD_RES 38
FT /note="Phosphoserine"
FT /evidence="ECO:0000269|PubMed:28910579"
FT MOD_RES 40
FT /note="Phosphoserine"
FT /evidence="ECO:0000269|PubMed:28910579"
FT MOD_RES 43
FT /note="Phosphothreonine"
FT /evidence="ECO:0000269|PubMed:28910579,
FT ECO:0007744|PubMed:14506206, ECO:0007744|PubMed:15308754"
FT MOD_RES 45
FT /note="Phosphoserine"
FT /evidence="ECO:0000269|PubMed:28910579,
FT ECO:0007744|PubMed:14506206, ECO:0007744|PubMed:15308754"
FT MOD_RES 825
FT /note="Phosphoserine"
FT /evidence="ECO:0000269|PubMed:28910579"
FT MOD_RES 841
FT /note="Phosphoserine"
FT /evidence="ECO:0000269|PubMed:28910579"
FT MOD_RES 844
FT /note="Phosphoserine"
FT /evidence="ECO:0000269|PubMed:28910579"
FT MUTAGEN 37
FT /note="S->A: Normal resistance against Blumeria graminis
FT and translocation to the host-pathogen interface."
FT /evidence="ECO:0000269|PubMed:28910579"
FT MUTAGEN 38
FT /note="S->A: Normal resistance against Blumeria graminis
FT and translocation to the host-pathogen interface."
FT /evidence="ECO:0000269|PubMed:28910579"
FT MUTAGEN 40
FT /note="S->A: Impaired resistance against Blumeria graminis
FT but normal translocation to the host-pathogen interface."
FT /evidence="ECO:0000269|PubMed:28910579"
FT MUTAGEN 43
FT /note="T->A: Normal resistance against Blumeria graminis
FT and translocation to the host-pathogen interface."
FT /evidence="ECO:0000269|PubMed:28910579"
FT MUTAGEN 45
FT /note="S->A: Impaired resistance against Blumeria graminis
FT but normal translocation to the host-pathogen interface."
FT /evidence="ECO:0000269|PubMed:28910579"
FT MUTAGEN 354
FT /note="G->D: In pen3-1; overaccumulation in leaves of 4-O-
FT beta-D-glucosyl-indol-3-yl formamide (4OGlcI3F) upon
FT Blumeria graminis conidiospore inoculation, a pathogen-
FT inducible tryptophan-derived compound, which biosynthesis
FT is dependent on the PEN2 metabolic pathway. More
FT susceptible to the necrotrophic pathogen Plectosphaerella
FT cucumerina, with higher frequency of fungal penetration and
FT increased formation of elongating secondary hyphae after
FT the first haustorium development. Fully defective in
FT preinvasive defense to nonadapted powdery mildews (e.g.
FT Blumeria graminis and Erysiphe pisi). Extensive leaf
FT chlorosis and reduced fungal growth upon infection by the
FT host-adapted pathogen Golovinomyces orontii associated with
FT an hyperaccumulation of both free and total salicylic acid
FT (SA) as well as pathogen-inducible hydrogen peroxides in
FT leaves. Impaired microbe-associated molecular patterns
FT (MAMPs)-induced (e.g. flg22) callose deposition.
FT Hypersensitivity to root growth inhibition by indole 3-
FT butyric acid (IBA), an auxin precursor. Reduced
FT accumulation (at protein level)."
FT /evidence="ECO:0000269|PubMed:16473969,
FT ECO:0000269|PubMed:26023163"
FT MUTAGEN 704
FT /note="L->F: In pen3-5; slight overaccumulation in leaves
FT of 4-O-beta-D-glucosyl-indol-3-yl formamide (4OGlcI3F) upon
FT Blumeria graminis conidiospore inoculation, a pathogen-
FT inducible tryptophan-derived compound, which biosynthesis
FT is dependent on the PEN2 metabolic pathway. Fully defective
FT in preinvasive defense to nonadapted powdery mildews (e.g.
FT Blumeria graminis and Erysiphe pisi). Normal susceptibility
FT to the host-adapted pathogen Golovinomyces orontii
FT associated with normal salicylic acid (SA) pathogen-
FT inducible hydrogen peroxides levels. Retained microbe-
FT associated molecular patterns (MAMPs)-induced (e.g. flg22)
FT callose deposition. Increased susceptibility to the
FT necrotrophic pathogen Plectosphaerella cucumerina. Enhancer
FT mutation of the mutant pen2-dependent invasive growth of
FT Blumeria graminis. Normal insensitivity to indole-3-butyric
FT acid (IBA), an auxin precursor. Normal accumulation (at
FT protein level)."
FT /evidence="ECO:0000269|PubMed:26023163"
FT MUTAGEN 825
FT /note="S->A: Normal resistance against Blumeria graminis
FT and translocation to the host-pathogen interface."
FT /evidence="ECO:0000269|PubMed:28910579"
FT MUTAGEN 844
FT /note="S->A: Normal resistance against Blumeria graminis
FT and translocation to the host-pathogen interface."
FT /evidence="ECO:0000269|PubMed:28910579"
FT MUTAGEN 915
FT /note="G->S: In pen3-2; overaccumulation in leaves of 4-O-
FT beta-D-glucosyl-indol-3-yl formamide (4OGlcI3F) upon
FT Blumeria graminis conidiospore inoculation, a pathogen-
FT inducible tryptophan-derived compound, which biosynthesis
FT is dependent on the PEN2 metabolic pathway. More
FT susceptible to the necrotrophic pathogen P. cucumerina,
FT with higher frequency of fungal penetration and increased
FT formation of elongating secondary hyphae after the first
FT haustorium development. Fully defective in preinvasive
FT defense to nonadapted powdery mildews (e.g. Blumeria
FT graminis and Erysiphe pisi). Extensive leaf chlorosis and
FT reduced fungal growth upon infection by the host-adapted
FT pathogen Golovinomyces orontii associated with an
FT hyperaccumulation of both free and total salicylic acid
FT (SA) as well as pathogen-inducible hydrogen peroxides in
FT leaves. Impaired microbe-associated molecular patterns
FT (MAMPs)-induced (e.g. flg22) callose deposition.
FT Hypersensitivity to root growth inhibition by indole 3-
FT butyric acid (IBA), an auxin precursor. Reduced
FT accumulation (at protein level)."
FT /evidence="ECO:0000269|PubMed:16473969,
FT ECO:0000269|PubMed:26023163"
FT MUTAGEN 1357
FT /note="A->V: In pdr8-115 and pen3-6; slight
FT overaccumulation in leaves of 4-O-beta-D-glucosyl-indol-3-
FT yl formamide (4OGlcI3F) upon Blumeria graminis conidiospore
FT inoculation, a pathogen-inducible tryptophan-derived
FT compound, which biosynthesis is dependent on the PEN2
FT metabolic pathway. Hypersensitivity to root growth
FT inhibition by 2,4-dichlorophenoxybutyric acid (2,4-DB), an
FT analog of indole 3-butyric acid (IBA), an auxin precursor.
FT Fully defective in preinvasive defense to nonadapted
FT powdery mildews (e.g. Blumeria graminis and Erysiphe pisi).
FT Normal susceptibility to the host-adapted pathogen
FT Golovinomyces orontii associated with normal salicylic acid
FT (SA), and pathogen-inducible hydrogen peroxides levels.
FT Retained microbe-associated molecular patterns (MAMPs)-
FT induced (e.g. flg22) callose deposition. Suppressor of a
FT subset of ibr5 mutant phenotypes including IBA sensitivity
FT but without suppressing ibr5 resistance to indole-3-acetic
FT acid (IAA). Normal accumulation (at protein level)."
FT /evidence="ECO:0000269|PubMed:19648296,
FT ECO:0000269|PubMed:26023163"
SQ SEQUENCE 1469 AA; 165082 MW; 54B39B2EEAAEED07 CRC64;
MDYNPNLPPL GGGGVSMRRS ISRSVSRASR NIEDIFSSGS RRTQSVNDDE EALKWAAIEK
LPTYSRLRTT LMNAVVEDDV YGNQLMSKEV DVTKLDGEDR QKFIDMVFKV AEQDNERILT
KLRNRIDRVG IKLPTVEVRY EHLTIKADCY TGNRSLPTLL NVVRNMGESA LGMIGIQFAK
KAQLTILKDI SGVIKPGRMT LLLGPPSSGK TTLLLALAGK LDKSLQVSGD ITYNGYQLDE
FVPRKTSAYI SQNDLHVGIM TVKETLDFSA RCQGVGTRYD LLNELARREK DAGIFPEADV
DLFMKASAAQ GVKNSLVTDY TLKILGLDIC KDTIVGDDMM RGISGGQKKR VTTGEMIVGP
TKTLFMDEIS TGLDSSTTFQ IVKCLQQIVH LNEATVLMSL LQPAPETFDL FDDIILVSEG
QIVYQGPRDN ILEFFESFGF KCPERKGTAD FLQEVTSKKD QEQYWVNPNR PYHYIPVSEF
ASRYKSFHVG TKMSNELAVP FDKSRGHKAA LVFDKYSVSK RELLKSCWDK EWLLMQRNAF
FYVFKTVQIV IIAAITSTLF LRTEMNTRNE GDANLYIGAL LFGMIINMFN GFAEMAMMVS
RLPVFYKQRD LLFYPSWTFS LPTFLLGIPS SILESTAWMV VTYYSIGFAP DASRFFKQFL
LVFLIQQMAA SLFRLIASVC RTMMIANTGG ALTLLLVFLL GGFLLPKGKI PDWWGWAYWV
SPLTYAFNGL VVNEMFAPRW MNKMASSNST IKLGTMVLNT WDVYHQKNWY WISVGALLCF
TALFNILFTL ALTYLNPLGK KAGLLPEEEN EDADQGKDPM RRSLSTADGN RRGEVAMGRM
SRDSAAEASG GAGNKKGMVL PFTPLAMSFD DVKYFVDMPG EMRDQGVTET RLQLLKGVTG
AFRPGVLTAL MGVSGAGKTT LMDVLAGRKT GGYIEGDVRI SGFPKVQETF ARISGYCEQT
DIHSPQVTVR ESLIFSAFLR LPKEVGKDEK MMFVDQVMEL VELDSLRDSI VGLPGVTGLS
TEQRKRLTIA VELVANPSII FMDEPTSGLD ARAAAIVMRA VRNTVDTGRT VVCTIHQPSI
DIFEAFDELM LMKRGGQVIY AGPLGQNSHK VVEYFESFPG VSKIPEKYNP ATWMLEASSL
AAELKLSVDF AELYNQSALH QRNKALVKEL SVPPAGASDL YFATQFSQNT WGQFKSCLWK
QWWTYWRSPD YNLVRFIFTL ATSLLIGTVF WQIGGNRSNA GDLTMVIGAL YAAIIFVGIN
NCSTVQPMVA VERTVFYRER AAGMYSAMPY AISQVTCELP YVLIQTVYYS LIVYAMVGFE
WKAEKFFWFV FVSYFSFLYW TYYGMMTVSL TPNQQVASIF ASAFYGIFNL FSGFFIPRPK
IPKWWIWYYW ICPVAWTVYG LIVSQYGDVE TRIQVLGGAP DLTVKQYIED HYGFQSDFMG
PVAAVLIAFT VFFAFIFAFC IRTLNFQTR