CH60_ECOLI
ID CH60_ECOLI Reviewed; 548 AA.
AC P0A6F5; P06139; Q2M6G1;
DT 01-JAN-1988, integrated into UniProtKB/Swiss-Prot.
DT 23-JAN-2007, sequence version 2.
DT 03-AUG-2022, entry version 166.
DE RecName: Full=Chaperonin GroEL {ECO:0000255|HAMAP-Rule:MF_00600, ECO:0000305};
DE EC=5.6.1.7 {ECO:0000255|HAMAP-Rule:MF_00600, ECO:0000269|PubMed:9285585, ECO:0000269|PubMed:9285593};
DE AltName: Full=60 kDa chaperonin {ECO:0000255|HAMAP-Rule:MF_00600};
DE AltName: Full=Chaperonin-60 {ECO:0000255|HAMAP-Rule:MF_00600, ECO:0000303|PubMed:10532860};
DE Short=Cpn60 {ECO:0000255|HAMAP-Rule:MF_00600, ECO:0000303|PubMed:10532860};
DE AltName: Full=GroEL protein {ECO:0000305};
GN Name=groEL {ECO:0000255|HAMAP-Rule:MF_00600, ECO:0000303|PubMed:7015340};
GN Synonyms=groL {ECO:0000255|HAMAP-Rule:MF_00600}, mopA;
GN OrderedLocusNames=b4143, JW4103;
OS Escherichia coli (strain K12).
OC Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales;
OC Enterobacteriaceae; Escherichia.
OX NCBI_TaxID=83333;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND FUNCTION.
RX PubMed=2897629; DOI=10.1038/333330a0;
RA Hemmingsen S.M., Woolford C., van der Vies S.M., Tilly K., Dennis D.T.,
RA Georgopoulos C., Hendrix R.W., Ellis R.J.;
RT "Homologous plant and bacterial proteins chaperone oligomeric protein
RT assembly.";
RL Nature 333:330-334(1988).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC STRAIN=K12 / MG1655 / ATCC 47076;
RX PubMed=7610040; DOI=10.1093/nar/23.12.2105;
RA Burland V.D., Plunkett G. III, Sofia H.J., Daniels D.L., Blattner F.R.;
RT "Analysis of the Escherichia coli genome VI: DNA sequence of the region
RT from 92.8 through 100 minutes.";
RL Nucleic Acids Res. 23:2105-2119(1995).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC STRAIN=K12 / MG1655 / ATCC 47076;
RX PubMed=9278503; DOI=10.1126/science.277.5331.1453;
RA Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V.,
RA Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F.,
RA Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B.,
RA Shao Y.;
RT "The complete genome sequence of Escherichia coli K-12.";
RL Science 277:1453-1462(1997).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC STRAIN=K12 / W3110 / ATCC 27325 / DSM 5911;
RX PubMed=16738553; DOI=10.1038/msb4100049;
RA Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S.,
RA Ohtsubo E., Baba T., Wanner B.L., Mori H., Horiuchi T.;
RT "Highly accurate genome sequences of Escherichia coli K-12 strains MG1655
RT and W3110.";
RL Mol. Syst. Biol. 2:E1-E5(2006).
RN [5]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-86, AND FUNCTION.
RX PubMed=2901493; DOI=10.1016/0022-2836(88)90141-6;
RA Miki T., Orita T., Furuno M., Horiuchi T.;
RT "Control of cell division by sex factor F in Escherichia coli. III.
RT Participation of the groES (mopB) gene of the host bacteria.";
RL J. Mol. Biol. 201:327-338(1988).
RN [6]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 298-495.
RX PubMed=2578448; DOI=10.1128/jb.161.1.446-449.1985;
RA Chanda P.K., Ono M., Kuwano M., Kung H.-F.;
RT "Cloning, sequence analysis, and expression of alteration of the mRNA
RT stability gene (ams+) of Escherichia coli.";
RL J. Bacteriol. 161:446-449(1985).
RN [7]
RP PROTEIN SEQUENCE OF 2-22.
RC STRAIN=K12 / EMG2;
RX PubMed=9298646; DOI=10.1002/elps.1150180807;
RA Link A.J., Robison K., Church G.M.;
RT "Comparing the predicted and observed properties of proteins encoded in the
RT genome of Escherichia coli K-12.";
RL Electrophoresis 18:1259-1313(1997).
RN [8]
RP PROTEIN SEQUENCE OF 2-12.
RC STRAIN=K12 / W3110 / ATCC 27325 / DSM 5911;
RA Frutiger S., Hughes G.J., Pasquali C., Hochstrasser D.F.;
RL Submitted (FEB-1996) to UniProtKB.
RN [9]
RP PROTEIN SEQUENCE OF 4-10.
RC STRAIN=K12;
RX PubMed=17895580; DOI=10.1266/ggs.82.291;
RA Otsuka Y., Koga M., Iwamoto A., Yonesaki T.;
RT "A role of RnlA in the RNase LS activity from Escherichia coli.";
RL Genes Genet. Syst. 82:291-299(2007).
RN [10]
RP PROTEIN SEQUENCE OF 455-519.
RX PubMed=7903255; DOI=10.1016/0014-5793(93)81600-5;
RA Thomson G.J., Coggins J.R., Price N.C.;
RT "The reaction of GroEL (cpn 60) with the ATP analogue 2',3' dialdehyde
RT ATP.";
RL FEBS Lett. 336:19-22(1993).
RN [11]
RP FUNTION (MICROBIAL INFECTION).
RX PubMed=379350; DOI=10.1016/0022-2836(79)90502-3;
RA Hendrix R.W.;
RT "Purification and properties of groE, a host protein involved in
RT bacteriophage assembly.";
RL J. Mol. Biol. 129:375-392(1979).
RN [12]
RP FUNTION (MICROBIAL INFECTION), AND GENE NAME.
RX PubMed=7015340; DOI=10.1073/pnas.78.3.1629;
RA Tilly K., Murialdo H., Georgopoulos C.;
RT "Identification of a second Escherichia coli groE gene whose product is
RT necessary for bacteriophage morphogenesis.";
RL Proc. Natl. Acad. Sci. U.S.A. 78:1629-1633(1981).
RN [13]
RP FUNCTION.
RX PubMed=2573517; DOI=10.1002/j.1460-2075.1989.tb08517.x;
RA Kusukawa N., Yura T., Ueguchi C., Akiyama Y., Ito K.;
RT "Effects of mutations in heat-shock genes groES and groEL on protein export
RT in Escherichia coli.";
RL EMBO J. 8:3517-3521(1989).
RN [14]
RP FUNCTION, AND ACTIVITY REGULATION.
RX PubMed=10532860; DOI=10.1038/342884a0;
RA Goloubinoff P., Christeller J.T., Gatenby A.A., Lorimer G.H.;
RT "Reconstitution of active dimeric ribulose bisphosphate carboxylase from an
RT unfoleded state depends on two chaperonin proteins and Mg-ATP.";
RL Nature 342:884-889(1989).
RN [15]
RP FUNCTION.
RX PubMed=1676490; DOI=10.1038/352036a0;
RA Martin J., Langer T., Boteva R., Schramel A., Horwich A.L., Hartl F.U.;
RT "Chaperonin-mediated protein folding at the surface of groEL through a
RT 'molten globule'-like intermediate.";
RL Nature 352:36-42(1991).
RN [16]
RP PHOSPHORYLATION.
RX PubMed=1349729; DOI=10.1038/357167a0;
RA Sherman M.Y., Goldberg A.L.;
RT "Heat shock in Escherichia coli alters the protein-binding properties of
RT the chaperonin groEL by inducing its phosphorylation.";
RL Nature 357:167-169(1992).
RN [17]
RP SUBUNIT, AND INTERACTION WITH GROES.
RX PubMed=1361169; DOI=10.1002/j.1460-2075.1992.tb05581.x;
RA Langer T., Pfeifer G., Martin J., Baumeister W., Hartl F.U.;
RT "Chaperonin-mediated protein folding: GroES binds to one end of the GroEL
RT cylinder, which accommodates the protein substrate within its central
RT cavity.";
RL EMBO J. 11:4757-4765(1992).
RN [18]
RP FUNCTION, AND MUTAGENESIS OF GLU-461.
RX PubMed=8104102; DOI=10.1016/0092-8674(93)90470-b;
RA Horwich A.L., Low K.B., Fenton W.A., Hirshfield I.N., Furtak K.;
RT "Folding in vivo of bacterial cytoplasmic proteins: role of GroEL.";
RL Cell 74:909-917(1993).
RN [19]
RP FUNCTION.
RX PubMed=7915201; DOI=10.1016/0092-8674(94)90533-9;
RA Weissman J.S., Kashi Y., Fenton W.A., Horwich A.L.;
RT "GroEL-mediated protein folding proceeds by multiple rounds of binding and
RT release of nonnative forms.";
RL Cell 78:693-702(1994).
RN [20]
RP MUTAGENESIS.
RX PubMed=7935796; DOI=10.1038/371614a0;
RA Fenton W.A., Kashi Y., Furtak K., Horwich A.L.;
RT "Residues in chaperonin GroEL required for polypeptide binding and
RT release.";
RL Nature 371:614-619(1994).
RN [21]
RP FUNCTION.
RX PubMed=7867798; DOI=10.1016/0014-5793(95)00041-7;
RA Taguchi H., Yoshida M.;
RT "Chaperonin releases the substrate protein in a form with tendency to
RT aggregate and ability to rebind to chaperonin.";
RL FEBS Lett. 359:195-198(1995).
RN [22]
RP SUBUNIT, AND INTERACTION WITH GROES.
RX PubMed=8618836; DOI=10.1073/pnas.92.26.12021;
RA Azem A., Diamant S., Kessel M., Weiss C., Goloubinoff P.;
RT "The protein-folding activity of chaperonins correlates with the symmetric
RT GroEL14(GroES7)2 heterooligomer.";
RL Proc. Natl. Acad. Sci. U.S.A. 92:12021-12025(1995).
RN [23]
RP SUBUNIT, AND INTERACTION WITH GROES.
RX PubMed=7638600; DOI=10.1126/science.7638600;
RA Engel A., Hayer-Hartl M.K., Goldie K.N., Pfeifer G., Hegerl R., Mueller S.,
RA da Silva A.C., Baumeister W., Hartl F.U.;
RT "Functional significance of symmetrical versus asymmetrical GroEL-GroES
RT chaperonin complexes.";
RL Science 269:832-836(1995).
RN [24]
RP SUBUNIT, AND INTERACTION WITH GROES.
RX PubMed=7638601; DOI=10.1126/science.7638601;
RA Hayer-Hartl M.K., Martin J., Hartl F.U.;
RT "Asymmetrical interaction of GroEL and GroES in the ATPase cycle of
RT assisted protein folding.";
RL Science 269:836-841(1995).
RN [25]
RP FUNCTION.
RX PubMed=8861908; DOI=10.1016/s0092-8674(00)81342-2;
RA Roseman A.M., Chen S., White H., Braig K., Saibil H.R.;
RT "The chaperonin ATPase cycle: mechanism of allosteric switching and
RT movements of substrate-binding domains in GroEL.";
RL Cell 87:241-251(1996).
RN [26]
RP SUBUNIT, AND INTERACTION WITH GROES.
RX PubMed=8663256; DOI=10.1074/jbc.271.27.16180;
RA Toeroek Z., Vigh L., Goloubinoff P.;
RT "Fluorescence detection of symmetric GroEL14(GroES7)2 heterooligomers
RT involved in protein release during the chaperonin cycle.";
RL J. Biol. Chem. 271:16180-16186(1996).
RN [27]
RP IDENTIFICATION BY 2D-GEL.
RX PubMed=9298644; DOI=10.1002/elps.1150180805;
RA VanBogelen R.A., Abshire K.Z., Moldover B., Olson E.R., Neidhardt F.C.;
RT "Escherichia coli proteome analysis using the gene-protein database.";
RL Electrophoresis 18:1243-1251(1997).
RN [28]
RP FUNCTION, CATALYTIC ACTIVITY, ACTIVITY REGULATION, AND MUTAGENESIS OF
RP ASP-398.
RX PubMed=9285593; DOI=10.1038/42047;
RA Rye H.S., Burston S.G., Fenton W.A., Beechem J.M., Xu Z., Sigler P.B.,
RA Horwich A.L.;
RT "Distinct actions of cis and trans ATP within the double ring of the
RT chaperonin GroEL.";
RL Nature 388:792-798(1997).
RN [29]
RP SUBUNIT, AND MUTAGENESIS OF ALA-2 AND GLU-76.
RX PubMed=15327959; DOI=10.1016/j.jmb.2004.07.066;
RA Qamra R., Srinivas V., Mande S.C.;
RT "Mycobacterium tuberculosis GroEL homologues unusually exist as lower
RT oligomers and retain the ability to suppress aggregation of substrate
RT proteins.";
RL J. Mol. Biol. 342:605-617(2004).
RN [30]
RP FUNCTION, AND DOMAIN.
RX PubMed=16751100; DOI=10.1016/j.cell.2006.04.027;
RA Tang Y.C., Chang H.C., Roeben A., Wischnewski D., Wischnewski N.,
RA Kerner M.J., Hartl F.U., Hayer-Hartl M.;
RT "Structural features of the GroEL-GroES nano-cage required for rapid
RT folding of encapsulated protein.";
RL Cell 125:903-914(2006).
RN [31]
RP FUNCTION.
RX PubMed=16684774; DOI=10.1074/jbc.m601605200;
RA Cliff M.J., Limpkin C., Cameron A., Burston S.G., Clarke A.R.;
RT "Elucidation of steps in the capture of a protein substrate for efficient
RT encapsulation by GroE.";
RL J. Biol. Chem. 281:21266-21275(2006).
RN [32]
RP FUNCTION, AND DOMAIN.
RX PubMed=18418386; DOI=10.1038/emboj.2008.77;
RA Tang Y.C., Chang H.C., Chakraborty K., Hartl F.U., Hayer-Hartl M.;
RT "Essential role of the chaperonin folding compartment in vivo.";
RL EMBO J. 27:1458-1468(2008).
RN [33]
RP FUNCTION.
RX PubMed=18987317; DOI=10.1073/pnas.0809794105;
RA Apetri A.C., Horwich A.L.;
RT "Chaperonin chamber accelerates protein folding through passive action of
RT preventing aggregation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:17351-17355(2008).
RN [34]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-117, AND IDENTIFICATION BY MASS
RP SPECTROMETRY.
RC STRAIN=K12 / JW1106, and K12 / MG1655 / ATCC 47076;
RX PubMed=18723842; DOI=10.1074/mcp.m800187-mcp200;
RA Zhang J., Sprung R., Pei J., Tan X., Kim S., Zhu H., Liu C.F.,
RA Grishin N.V., Zhao Y.;
RT "Lysine acetylation is a highly abundant and evolutionarily conserved
RT modification in Escherichia coli.";
RL Mol. Cell. Proteomics 8:215-225(2009).
RN [35]
RP FUNCTION.
RX PubMed=19915138; DOI=10.1073/pnas.0911556106;
RA Tyagi N.K., Fenton W.A., Horwich A.L.;
RT "GroEL/GroES cycling: ATP binds to an open ring before substrate protein
RT favoring protein binding and production of the native state.";
RL Proc. Natl. Acad. Sci. U.S.A. 106:20264-20269(2009).
RN [36]
RP FUNCTION.
RX PubMed=20603018; DOI=10.1016/j.cell.2010.05.027;
RA Chakraborty K., Chatila M., Sinha J., Shi Q., Poschner B.C., Sikor M.,
RA Jiang G., Lamb D.C., Hartl F.U., Hayer-Hartl M.;
RT "Chaperonin-catalyzed rescue of kinetically trapped states in protein
RT folding.";
RL Cell 142:112-122(2010).
RN [37]
RP SUBCELLULAR LOCATION.
RX PubMed=20094032; DOI=10.1038/emboj.2009.412;
RA Winkler J., Seybert A., Konig L., Pruggnaller S., Haselmann U., Sourjik V.,
RA Weiss M., Frangakis A.S., Mogk A., Bukau B.;
RT "Quantitative and spatio-temporal features of protein aggregation in
RT Escherichia coli and consequences on protein quality control and cellular
RT ageing.";
RL EMBO J. 29:910-923(2010).
RN [38]
RP SUCCINYLATION AT LYS-34; LYS-51; LYS-117; LYS-277; LYS-321 AND LYS-390.
RC STRAIN=K12;
RX PubMed=21151122; DOI=10.1038/nchembio.495;
RA Zhang Z., Tan M., Xie Z., Dai L., Chen Y., Zhao Y.;
RT "Identification of lysine succinylation as a new post-translational
RT modification.";
RL Nat. Chem. Biol. 7:58-63(2011).
RN [39]
RP FUNCTION.
RX PubMed=22445172; DOI=10.1016/j.cell.2012.02.047;
RA Clare D.K., Vasishtan D., Stagg S., Quispe J., Farr G.W., Topf M.,
RA Horwich A.L., Saibil H.R.;
RT "ATP-triggered conformational changes delineate substrate-binding and
RT -folding mechanics of the GroEL chaperonin.";
RL Cell 149:113-123(2012).
RN [40]
RP SUBCELLULAR LOCATION.
RC STRAIN=K12 / MG1655 / ATCC 47076;
RX PubMed=22380631; DOI=10.1111/j.1365-2958.2012.08021.x;
RA Li G., Young K.D.;
RT "Isolation and identification of new inner membrane-associated proteins
RT that localize to cell poles in Escherichia coli.";
RL Mol. Microbiol. 84:276-295(2012).
RN [41]
RP FUNCTION.
RX PubMed=24816391; DOI=10.1016/j.jmb.2014.04.018;
RA Gupta A.J., Haldar S., Milicic G., Hartl F.U., Hayer-Hartl M.;
RT "Active cage mechanism of chaperonin-assisted protein folding demonstrated
RT at single-molecule level.";
RL J. Mol. Biol. 426:2739-2754(2014).
RN [42]
RP SUBUNIT.
RX PubMed=25912285; DOI=10.1016/j.jmb.2015.04.009;
RA Haldar S., Gupta A.J., Yan X., Milicic G., Hartl F.U., Hayer-Hartl M.;
RT "Chaperonin-assisted protein folding: relative population of asymmetric and
RT symmetric GroEL:GroES complexes.";
RL J. Mol. Biol. 427:2244-2255(2015).
RN [43]
RP REVIEW.
RX PubMed=19638247; DOI=10.1017/s0033583509004764;
RA Horwich A.L., Fenton W.A.;
RT "Chaperonin-mediated protein folding: using a central cavity to kinetically
RT assist polypeptide chain folding.";
RL Q. Rev. Biophys. 42:83-116(2009).
RN [44]
RP REVIEW.
RX PubMed=26422689; DOI=10.1016/j.tibs.2015.07.009;
RA Hayer-Hartl M., Bracher A., Hartl F.U.;
RT "The GroEL-GroES chaperonin machine: a nano-cage for protein folding.";
RL Trends Biochem. Sci. 41:62-76(2016).
RN [45]
RP REVIEW.
RX PubMed=32446288; DOI=10.1002/1873-3468.13844;
RA Balchin D., Hayer-Hartl M., Hartl F.U.;
RT "Recent advances in understanding catalysis of protein folding by molecular
RT chaperones.";
RL FEBS Lett. 594:2770-2781(2020).
RN [46] {ECO:0007744|PDB:1GRL}
RP X-RAY CRYSTALLOGRAPHY (2.80 ANGSTROMS), SUBUNIT, AND DOMAIN.
RX PubMed=7935790; DOI=10.1038/371578a0;
RA Braig K., Otwinowski Z., Hegde R.S., Boisvert D.C., Joachimiak A.,
RA Horwich A.L., Sigler P.B.;
RT "The crystal structure of the bacterial chaperonin GroEL at 2.8 A.";
RL Nature 371:578-586(1994).
RN [47] {ECO:0007744|PDB:1OEL}
RP X-RAY CRYSTALLOGRAPHY (2.80 ANGSTROMS) OF 2-548, AND SUBUNIT.
RX PubMed=8846220; DOI=10.1038/nsb1295-1083;
RA Braig K., Adams P.D., Bruenger A.T.;
RT "Conformational variability in the refined structure of the chaperonin
RT GroEL at 2.8-A resolution.";
RL Nat. Struct. Biol. 2:1083-1094(1995).
RN [48]
RP X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS).
RX PubMed=8564544; DOI=10.1038/nsb0296-170;
RA Boisvert D.C., Wang J., Otwinowski Z., Horwich A.L., Sigler P.B.;
RT "The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed
RT with ATP gamma S.";
RL Nat. Struct. Biol. 3:170-177(1996).
RN [49] {ECO:0007744|PDB:1JON}
RP X-RAY CRYSTALLOGRAPHY (2.50 ANGSTROMS) OF 191-345.
RX PubMed=8986757; DOI=10.1073/pnas.93.26.15024;
RA Zahn R., Buckle A.M., Perrett S., Johnson C.M., Corrales F.J., Golbik R.,
RA Fersht A.R.;
RT "Chaperone activity and structure of monomeric polypeptide binding domains
RT of GroEL.";
RL Proc. Natl. Acad. Sci. U.S.A. 93:15024-15029(1996).
RN [50] {ECO:0007744|PDB:1AON}
RP X-RAY CRYSTALLOGRAPHY (3.00 ANGSTROMS) OF 2-548 IN COMPLEX WITH GROES AND
RP ADP, FUNCTION, CATALYTIC ACTIVITY, SUBUNIT, AND DOMAIN.
RX PubMed=9285585; DOI=10.1038/41944;
RA Xu Z., Horwich A.L., Sigler P.B.;
RT "The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin
RT complex.";
RL Nature 388:741-750(1997).
RN [51] {ECO:0007744|PDB:1DK7, ECO:0007744|PDB:1DKD}
RP X-RAY CRYSTALLOGRAPHY (2.02 ANGSTROMS) OF 192-337.
RX PubMed=10619429; DOI=10.1016/s0092-8674(00)81673-6;
RA Chen L., Sigler P.B.;
RT "The crystal structure of a GroEL/peptide complex: plasticity as a basis
RT for substrate diversity.";
RL Cell 99:757-768(1999).
RN [52] {ECO:0007744|PDB:1PCQ, ECO:0007744|PDB:1PF9}
RP X-RAY CRYSTALLOGRAPHY (2.81 ANGSTROMS) OF 2-525 IN COMPLEX WITH GROES AND
RP ADP.
RX PubMed=14517228; DOI=10.1093/emboj/cdg477;
RA Chaudhry C., Farr G.W., Todd M.J., Rye H.S., Brunger A.T., Adams P.D.,
RA Horwich A.L., Sigler P.B.;
RT "Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-
RT GroES: function, structure and energetics.";
RL EMBO J. 22:4877-4887(2003).
RN [53] {ECO:0007744|PDB:1XCK}
RP X-RAY CRYSTALLOGRAPHY (2.92 ANGSTROMS) OF 2-548, AND DOMAIN.
RX PubMed=16288915; DOI=10.1016/j.jmb.2005.09.096;
RA Bartolucci C., Lamba D., Grazulis S., Manakova E., Heumann H.;
RT "Crystal structure of wild-type chaperonin GroEL.";
RL J. Mol. Biol. 354:940-951(2005).
RN [54] {ECO:0007744|PDB:2NWC}
RP X-RAY CRYSTALLOGRAPHY (3.02 ANGSTROMS).
RX PubMed=17554162; DOI=10.1107/s1744309107020295;
RA Kiser P.D., Lodowski D.T., Palczewski K.;
RT "Purification, crystallization and structure determination of native GroEL
RT from Escherichia coli lacking bound potassium ions.";
RL Acta Crystallogr. F 63:457-461(2007).
RN [55] {ECO:0007744|PDB:3ZPZ, ECO:0007744|PDB:3ZQ0, ECO:0007744|PDB:3ZQ1}
RP STRUCTURE BY ELECTRON MICROSCOPY (8.90 ANGSTROMS) OF 2-527 IN COMPLEX WITH
RP GROES.
RX PubMed=23746846; DOI=10.1016/j.cell.2013.04.052;
RA Chen D.H., Madan D., Weaver J., Lin Z., Schroder G.F., Chiu W., Rye H.S.;
RT "Visualizing GroEL/ES in the act of encapsulating a folding protein.";
RL Cell 153:1354-1365(2013).
RN [56] {ECO:0007744|PDB:3WVL}
RP X-RAY CRYSTALLOGRAPHY (3.79 ANGSTROMS) IN COMPLEX WITH GROES AND ATP, AND
RP SUBUNIT.
RX PubMed=25174333; DOI=10.1016/j.jmb.2014.08.017;
RA Koike-Takeshita A., Arakawa T., Taguchi H., Shimamura T.;
RT "Crystal structure of a symmetric football-shaped GroEL:GroES2-ATP14
RT complex determined at 3.8A reveals rearrangement between two GroEL rings.";
RL J. Mol. Biol. 426:3634-3641(2014).
RN [57] {ECO:0007744|PDB:5W0S}
RP STRUCTURE BY ELECTRON MICROSCOPY (3.50 ANGSTROMS) OF 2-525.
RX PubMed=28710336; DOI=10.1073/pnas.1704725114;
RA Roh S.H., Hryc C.F., Jeong H.H., Fei X., Jakana J., Lorimer G.H., Chiu W.;
RT "Subunit conformational variation within individual GroEL oligomers
RT resolved by Cryo-EM.";
RL Proc. Natl. Acad. Sci. U.S.A. 114:8259-8264(2017).
RN [58] {ECO:0007744|PDB:5OPW, ECO:0007744|PDB:5OPX}
RP X-RAY CRYSTALLOGRAPHY (3.19 ANGSTROMS) OF 2-548 IN COMPLEX WITH GROES,
RP ACTIVITY REGULATION, AND MUTAGENESIS OF ALA-109.
RX PubMed=29336887; DOI=10.1016/j.cell.2017.12.010;
RA Yan X., Shi Q., Bracher A., Milicic G., Singh A.K., Hartl F.U.,
RA Hayer-Hartl M.;
RT "GroEL ring separation and exchange in the chaperonin reaction.";
RL Cell 172:605-617.e11(2018).
CC -!- FUNCTION: Together with its co-chaperonin GroES, plays an essential
CC role in assisting protein folding (PubMed:2897629, PubMed:2573517,
CC PubMed:10532860, PubMed:1676490, PubMed:8104102, PubMed:9285593,
CC PubMed:16751100, PubMed:18418386, PubMed:18987317, PubMed:20603018,
CC PubMed:24816391). The GroEL-GroES system forms a nano-cage that allows
CC encapsulation of the non-native substrate proteins and provides a
CC physical environment optimized to promote and accelerate protein
CC folding, probably by preventing aggregation and by entropically
CC destabilizing folding intermediates (PubMed:16751100, PubMed:18418386,
CC PubMed:18987317, PubMed:20603018, PubMed:24816391). Rapid binding of
CC ATP, followed by slower binding of the non-native substrate protein and
CC GroES to the cis open ring of GroEL initiates productive folding of the
CC non-native protein inside a highly stable GroEL-ATP-GroES complex
CC (PubMed:9285593, PubMed:9285585, PubMed:19915138, PubMed:22445172).
CC Binding of ATP and GroES induces conformational changes that result in
CC the release of the substrate protein into a nano-cage compartment,
CC within the GroEL central cavity, for folding in isolation
CC (PubMed:8861908, PubMed:9285585, PubMed:16684774, PubMed:22445172). To
CC discharge GroES and substrate protein, ATP hydrolysis in the cis ring
CC is required to form a GroEL-ADP-GroES complex with decreased stability
CC (PubMed:9285593). Finally, binding of ATP to the opposite trans ring of
CC GroEL results in disassembly of the cis-ternary complex, which opens
CC the cage and allows release of the folded protein (PubMed:9285593,
CC PubMed:9285585). Proteins released in non-native form may be rapidly
CC rebound by another GroEL complex until all of the initially bound
CC polypeptide reaches native form (PubMed:7915201, PubMed:7867798). Can
CC rescue kinetically trapped intermediates (PubMed:20603018). GroEL shows
CC ATPase activity (PubMed:379350, PubMed:1676490, PubMed:9285593). ATP
CC hydrolysis moves the reaction cycle forward but is not required for
CC substrate folding (PubMed:9285593). {ECO:0000269|PubMed:10532860,
CC ECO:0000269|PubMed:16684774, ECO:0000269|PubMed:16751100,
CC ECO:0000269|PubMed:1676490, ECO:0000269|PubMed:18418386,
CC ECO:0000269|PubMed:18987317, ECO:0000269|PubMed:19915138,
CC ECO:0000269|PubMed:20603018, ECO:0000269|PubMed:22445172,
CC ECO:0000269|PubMed:24816391, ECO:0000269|PubMed:2573517,
CC ECO:0000269|PubMed:2897629, ECO:0000269|PubMed:379350,
CC ECO:0000269|PubMed:7867798, ECO:0000269|PubMed:7915201,
CC ECO:0000269|PubMed:8104102, ECO:0000269|PubMed:8861908,
CC ECO:0000269|PubMed:9285585, ECO:0000269|PubMed:9285593}.
CC -!- FUNCTION: Also plays a role in coupling between replication of the F
CC plasmid and cell division of the cell. {ECO:0000269|PubMed:2901493}.
CC -!- FUNCTION: (Microbial infection) Essential for the assembly of several
CC bacteriophages. {ECO:0000269|PubMed:379350,
CC ECO:0000269|PubMed:7015340}.
CC -!- CATALYTIC ACTIVITY:
CC Reaction=ATP + H2O + a folded polypeptide = ADP + phosphate + an
CC unfolded polypeptide.; EC=5.6.1.7; Evidence={ECO:0000255|HAMAP-
CC Rule:MF_00600, ECO:0000269|PubMed:9285585,
CC ECO:0000269|PubMed:9285593};
CC -!- ACTIVITY REGULATION: During the substrate-folding cycle, the two GroEL
CC rings separate for effective substrate binding and chaperonin activity.
CC Ring separation is triggered by ATP binding to the trans ring of the
CC asymmetric GroEL:GroES complex and avoids formation of functionally
CC impaired symmetric GroEL:GroES2 complexes (PubMed:29336887). Activity
CC of the GroEL-GroES chaperonin complex requires Mg-ATP (PubMed:10532860,
CC PubMed:9285593). {ECO:0000269|PubMed:10532860,
CC ECO:0000269|PubMed:29336887, ECO:0000269|PubMed:9285593}.
CC -!- SUBUNIT: Forms a cylinder of 14 subunits composed of two heptameric
CC rings stacked back-to-back (PubMed:1361169, PubMed:15327959,
CC PubMed:7935790, PubMed:8846220, PubMed:9285585). Interacts with the co-
CC chaperonin GroES (PubMed:1361169, PubMed:7638600, PubMed:7638601,
CC PubMed:8618836, PubMed:8663256, PubMed:9285585, PubMed:25174333). Can
CC form asymmetrical complexes, composed of one GroEL and one GroES, and
CC symmetrical complexes, formed between one GroEL and two GroES oligomers
CC (PubMed:1361169, PubMed:7638600, PubMed:7638601, PubMed:8618836,
CC PubMed:8663256, PubMed:25174333). The asymmetrical complex is the
CC functional unit (PubMed:7638600, PubMed:7638601, PubMed:25912285). It
CC was suggested that the symmetric heterooligomer may represent a
CC transient intermediate in the chaperonin protein folding cycle
CC (PubMed:8618836, PubMed:8663256). Another study shows that the
CC symmetric heterooligomers are substantially populated only in the
CC presence of proteins that cannot be folded by the chaperonin
CC (PubMed:25912285). {ECO:0000269|PubMed:1361169,
CC ECO:0000269|PubMed:15327959, ECO:0000269|PubMed:25174333,
CC ECO:0000269|PubMed:25912285, ECO:0000269|PubMed:7638600,
CC ECO:0000269|PubMed:7638601, ECO:0000269|PubMed:7935790,
CC ECO:0000269|PubMed:8618836, ECO:0000269|PubMed:8663256,
CC ECO:0000269|PubMed:8846220, ECO:0000269|PubMed:9285585}.
CC -!- INTERACTION:
CC P0A6F5; P0AFG8: aceE; NbExp=3; IntAct=EBI-543750, EBI-542683;
CC P0A6F5; P00887: aroH; NbExp=3; IntAct=EBI-543750, EBI-1125143;
CC P0A6F5; P76213: cho; NbExp=3; IntAct=EBI-543750, EBI-545155;
CC P0A6F5; P77279: fetA; NbExp=3; IntAct=EBI-543750, EBI-560090;
CC P0A6F5; P19323: fhlA; NbExp=2; IntAct=EBI-543750, EBI-1113147;
CC P0A6F5; P0A6F5: groEL; NbExp=11; IntAct=EBI-543750, EBI-543750;
CC P0A6F5; P0A6F9: groES; NbExp=31; IntAct=EBI-543750, EBI-369169;
CC P0A6F5; P09372: grpE; NbExp=3; IntAct=EBI-543750, EBI-547441;
CC P0A6F5; P77329: hyfG; NbExp=4; IntAct=EBI-543750, EBI-548413;
CC P0A6F5; P0AEX9: malE; NbExp=3; IntAct=EBI-543750, EBI-369910;
CC P0A6F5; P0AEY3: mazG; NbExp=2; IntAct=EBI-543750, EBI-554166;
CC P0A6F5; P0A817: metK; NbExp=2; IntAct=EBI-543750, EBI-546295;
CC P0A6F5; P63386: mlaF; NbExp=4; IntAct=EBI-543750, EBI-561408;
CC P0A6F5; P0A717: prs; NbExp=2; IntAct=EBI-543750, EBI-906827;
CC P0A6F5; P0A7H0: recF; NbExp=4; IntAct=EBI-543750, EBI-556839;
CC P0A6F5; P37745: rfbC; NbExp=3; IntAct=EBI-543750, EBI-557071;
CC P0A6F5; P0AGB3: rpoH; NbExp=3; IntAct=EBI-543750, EBI-555342;
CC P0A6F5; P45527: ubiU; NbExp=4; IntAct=EBI-543750, EBI-561157;
CC P0A6F5; P0A9W0: ulaR; NbExp=4; IntAct=EBI-543750, EBI-560926;
CC P0A6F5; P39177: uspG; NbExp=5; IntAct=EBI-543750, EBI-561722;
CC P0A6F5; P37640: yhjB; NbExp=3; IntAct=EBI-543750, EBI-542016;
CC P0A6F5; P76524: ypdF; NbExp=2; IntAct=EBI-543750, EBI-1128711;
CC P0A6F5; P60010: ACT1; Xeno; NbExp=5; IntAct=EBI-543750, EBI-2169;
CC P0A6F5; P13423: pagA; Xeno; NbExp=2; IntAct=EBI-543750, EBI-456868;
CC P0A6F5; P00586: TST; Xeno; NbExp=2; IntAct=EBI-543750, EBI-7900146;
CC -!- SUBCELLULAR LOCATION: Cytoplasm {ECO:0000255|HAMAP-Rule:MF_00600,
CC ECO:0000269|PubMed:20094032, ECO:0000269|PubMed:22380631}.
CC Note=Uniformly located in the cytoplasm (PubMed:20094032). Exclusively
CC localized in foci, usually near 1 cell pole in mid-to-late exponential
CC phase (PubMed:22380631); polar localization depends on the minCDE
CC operon. Foci form near midcell (Probable).
CC {ECO:0000269|PubMed:20094032, ECO:0000269|PubMed:22380631,
CC ECO:0000305}.
CC -!- DOMAIN: Each subunit is composed of an apical domain that binds non-
CC folded proteins and GroES, an intermediate domain and an equatorial
CC domain that binds ATP and is involved in inter-ring interactions
CC (PubMed:7935790, PubMed:16288915). Forms a large central channel that
CC appears to traverse the entire length of the cylinder with no
CC obstruction (PubMed:7935790). The central channel of GroEL functions as
CC two cavities, one in each ring, that are separated from each other by
CC the crystallographically disordered 23-amino-acid C-terminal segments
CC of the seven subunits (PubMed:9285585). The entry and exit of
CC polypeptide seem to be restricted to the apical end of each ring
CC (PubMed:9285585). {ECO:0000269|PubMed:16288915,
CC ECO:0000269|PubMed:7935790, ECO:0000269|PubMed:9285585}.
CC -!- DOMAIN: Modulating the volume of the GroEL central cavity affects
CC folding speed in accordance with confinement theory. Small proteins
CC fold more rapidly as the size of the cage is gradually reduced to a
CC point where restriction in space slows folding dramatically. For larger
CC proteins, either expanding or reducing cage volume decelerate folding
CC (PubMed:16751100). A stepwise reduction in cage size results in a
CC gradual loss of cell viability (PubMed:18418386).
CC {ECO:0000269|PubMed:16751100, ECO:0000269|PubMed:18418386}.
CC -!- PTM: Phosphorylated reversibly during heat shock.
CC {ECO:0000269|PubMed:1349729}.
CC -!- SIMILARITY: Belongs to the chaperonin (HSP60) family.
CC {ECO:0000255|HAMAP-Rule:MF_00600}.
CC -!- CAUTION: Was originally designated as the ams protein.
CC {ECO:0000305|PubMed:2578448}.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAA23934.1; Type=Frameshift; Evidence={ECO:0000305};
CC ---------------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC ---------------------------------------------------------------------------
DR EMBL; X07850; CAA30698.1; -; Genomic_DNA.
DR EMBL; U14003; AAA97042.1; -; Genomic_DNA.
DR EMBL; U00096; AAC77103.1; -; Genomic_DNA.
DR EMBL; AP009048; BAE78145.1; -; Genomic_DNA.
DR EMBL; X07899; CAA30739.1; -; Genomic_DNA.
DR EMBL; M11294; AAA23934.1; ALT_FRAME; Genomic_DNA.
DR PIR; S56371; BVECGL.
DR RefSeq; NP_418567.1; NC_000913.3.
DR RefSeq; WP_000729117.1; NZ_STEB01000014.1.
DR PDB; 1AON; X-ray; 3.00 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 1DK7; X-ray; 2.02 A; A/B=191-336.
DR PDB; 1DKD; X-ray; 2.10 A; A/B/C/D=191-336.
DR PDB; 1FY9; X-ray; 2.20 A; A=191-376.
DR PDB; 1FYA; X-ray; 2.20 A; A=191-376.
DR PDB; 1GR5; EM; 7.90 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 1GRL; X-ray; 2.80 A; A/B/C/D/E/F/G=1-548.
DR PDB; 1GRU; EM; 12.50 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 1JON; X-ray; 2.50 A; A=191-345.
DR PDB; 1KID; X-ray; 1.70 A; A=188-376.
DR PDB; 1KP8; X-ray; 2.00 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 1LA1; X-ray; 2.06 A; A=188-379.
DR PDB; 1MNF; X-ray; 3.00 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 1OEL; X-ray; 2.80 A; A/B/C/D/E/F/G=2-548.
DR PDB; 1PCQ; X-ray; 2.81 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-525.
DR PDB; 1PF9; X-ray; 2.99 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-525.
DR PDB; 1SS8; X-ray; 2.70 A; A/B/C/D/E/F/G=2-525.
DR PDB; 1SVT; X-ray; 2.81 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-525.
DR PDB; 1SX3; X-ray; 2.00 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-526.
DR PDB; 1SX4; X-ray; 3.00 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-525.
DR PDB; 1XCK; X-ray; 2.92 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 2C7C; EM; 7.70 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 2C7D; EM; 8.70 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 2C7E; EM; 9.70 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 2CGT; EM; 8.20 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 2EU1; X-ray; 3.29 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 2NWC; X-ray; 3.02 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 2YEY; X-ray; 3.30 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-525.
DR PDB; 3C9V; EM; 4.70 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-527.
DR PDB; 3CAU; EM; 4.20 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-527.
DR PDB; 3VZ6; X-ray; 1.50 A; A=191-376.
DR PDB; 3VZ7; X-ray; 1.80 A; A=191-376.
DR PDB; 3VZ8; X-ray; 1.90 A; A/B/C=191-376.
DR PDB; 3WVL; X-ray; 3.79 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 3ZPZ; EM; 8.90 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-527.
DR PDB; 3ZQ0; EM; 9.20 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-525.
DR PDB; 3ZQ1; EM; 15.90 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-527.
DR PDB; 4AAQ; EM; 8.00 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 4AAR; EM; 8.00 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 4AAS; EM; 8.50 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 4AAU; EM; 8.50 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 4AB2; EM; 8.50 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 4AB3; EM; 8.50 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 4V43; X-ray; 3.52 A; 1/2/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z=2-548.
DR PDB; 4WGL; X-ray; 3.13 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 4WSC; X-ray; 3.04 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 5OPW; X-ray; 3.19 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-548.
DR PDB; 5OPX; X-ray; 3.64 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDB; 5W0S; EM; 3.50 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=2-525.
DR PDB; 7PBJ; EM; 3.40 A; Ad/Ae/Ak/Al/Ar/As/Ay/Az/Bf/Bg/Bm/Bn/Bt/Bu=2-525.
DR PDB; 7PBX; EM; 3.43 A; Ac/Ad/Ai/Aj/Ao/Ap/Au/Av/Ba/Bb/Bg/Bh/Bm/Bn=2-525.
DR PDB; 7VWX; EM; 7.60 A; A/B/C/D/E/F/G/H/I/J/K/L/M/N=1-548.
DR PDBsum; 1AON; -.
DR PDBsum; 1DK7; -.
DR PDBsum; 1DKD; -.
DR PDBsum; 1FY9; -.
DR PDBsum; 1FYA; -.
DR PDBsum; 1GR5; -.
DR PDBsum; 1GRL; -.
DR PDBsum; 1GRU; -.
DR PDBsum; 1JON; -.
DR PDBsum; 1KID; -.
DR PDBsum; 1KP8; -.
DR PDBsum; 1LA1; -.
DR PDBsum; 1MNF; -.
DR PDBsum; 1OEL; -.
DR PDBsum; 1PCQ; -.
DR PDBsum; 1PF9; -.
DR PDBsum; 1SS8; -.
DR PDBsum; 1SVT; -.
DR PDBsum; 1SX3; -.
DR PDBsum; 1SX4; -.
DR PDBsum; 1XCK; -.
DR PDBsum; 2C7C; -.
DR PDBsum; 2C7D; -.
DR PDBsum; 2C7E; -.
DR PDBsum; 2CGT; -.
DR PDBsum; 2EU1; -.
DR PDBsum; 2NWC; -.
DR PDBsum; 2YEY; -.
DR PDBsum; 3C9V; -.
DR PDBsum; 3CAU; -.
DR PDBsum; 3VZ6; -.
DR PDBsum; 3VZ7; -.
DR PDBsum; 3VZ8; -.
DR PDBsum; 3WVL; -.
DR PDBsum; 3ZPZ; -.
DR PDBsum; 3ZQ0; -.
DR PDBsum; 3ZQ1; -.
DR PDBsum; 4AAQ; -.
DR PDBsum; 4AAR; -.
DR PDBsum; 4AAS; -.
DR PDBsum; 4AAU; -.
DR PDBsum; 4AB2; -.
DR PDBsum; 4AB3; -.
DR PDBsum; 4V43; -.
DR PDBsum; 4WGL; -.
DR PDBsum; 4WSC; -.
DR PDBsum; 5OPW; -.
DR PDBsum; 5OPX; -.
DR PDBsum; 5W0S; -.
DR PDBsum; 7PBJ; -.
DR PDBsum; 7PBX; -.
DR PDBsum; 7VWX; -.
DR AlphaFoldDB; P0A6F5; -.
DR SMR; P0A6F5; -.
DR BioGRID; 4263077; 558.
DR BioGRID; 852957; 7.
DR ComplexPortal; CPX-2113; GroEL-GroES complex.
DR DIP; DIP-339N; -.
DR IntAct; P0A6F5; 700.
DR MINT; P0A6F5; -.
DR STRING; 511145.b4143; -.
DR ChEMBL; CHEMBL4296299; -.
DR CarbonylDB; P0A6F5; -.
DR iPTMnet; P0A6F5; -.
DR MetOSite; P0A6F5; -.
DR SWISS-2DPAGE; P0A6F5; -.
DR jPOST; P0A6F5; -.
DR PaxDb; P0A6F5; -.
DR PRIDE; P0A6F5; -.
DR EnsemblBacteria; AAC77103; AAC77103; b4143.
DR EnsemblBacteria; BAE78145; BAE78145; BAE78145.
DR GeneID; 66671945; -.
DR GeneID; 948665; -.
DR KEGG; ecj:JW4103; -.
DR KEGG; eco:b4143; -.
DR PATRIC; fig|1411691.4.peg.2557; -.
DR EchoBASE; EB0594; -.
DR eggNOG; COG0459; Bacteria.
DR HOGENOM; CLU_016503_3_0_6; -.
DR InParanoid; P0A6F5; -.
DR OMA; TDTDKME; -.
DR PhylomeDB; P0A6F5; -.
DR BioCyc; EcoCyc:EG10599-MON; -.
DR BioCyc; MetaCyc:EG10599-MON; -.
DR BRENDA; 5.6.1.7; 2026.
DR SABIO-RK; P0A6F5; -.
DR EvolutionaryTrace; P0A6F5; -.
DR PRO; PR:P0A6F5; -.
DR Proteomes; UP000000318; Chromosome.
DR Proteomes; UP000000625; Chromosome.
DR GO; GO:0005829; C:cytosol; IDA:EcoCyc.
DR GO; GO:1990220; C:GroEL-GroES complex; IDA:EcoCyc.
DR GO; GO:0016020; C:membrane; HDA:UniProtKB.
DR GO; GO:0005524; F:ATP binding; IDA:EcoCyc.
DR GO; GO:0016887; F:ATP hydrolysis activity; IDA:EcoCyc.
DR GO; GO:0140662; F:ATP-dependent protein folding chaperone; IEA:InterPro.
DR GO; GO:0042802; F:identical protein binding; IDA:EcoCyc.
DR GO; GO:0016853; F:isomerase activity; IEA:UniProtKB-KW.
DR GO; GO:0000287; F:magnesium ion binding; IDA:EcoCyc.
DR GO; GO:0051082; F:unfolded protein binding; IDA:EcoCyc.
DR GO; GO:0051085; P:chaperone cofactor-dependent protein refolding; IDA:EcoCyc.
DR GO; GO:0006457; P:protein folding; IMP:EcoCyc.
DR GO; GO:0042026; P:protein refolding; IBA:GO_Central.
DR GO; GO:0009408; P:response to heat; IEP:EcoliWiki.
DR GO; GO:0009314; P:response to radiation; IMP:EcoCyc.
DR GO; GO:0019068; P:virion assembly; IMP:EcoliWiki.
DR CDD; cd03344; GroEL; 1.
DR Gene3D; 1.10.560.10; -; 1.
DR Gene3D; 3.30.260.10; -; 1.
DR Gene3D; 3.50.7.10; -; 1.
DR HAMAP; MF_00600; CH60; 1.
DR InterPro; IPR018370; Chaperonin_Cpn60_CS.
DR InterPro; IPR001844; Cpn60/GroEL.
DR InterPro; IPR002423; Cpn60/GroEL/TCP-1.
DR InterPro; IPR027409; GroEL-like_apical_dom_sf.
DR InterPro; IPR027413; GROEL-like_equatorial_sf.
DR InterPro; IPR027410; TCP-1-like_intermed_sf.
DR Pfam; PF00118; Cpn60_TCP1; 1.
DR PRINTS; PR00298; CHAPERONIN60.
DR SUPFAM; SSF48592; SSF48592; 1.
DR SUPFAM; SSF52029; SSF52029; 1.
DR SUPFAM; SSF54849; SSF54849; 1.
DR TIGRFAMs; TIGR02348; GroEL; 1.
DR PROSITE; PS00296; CHAPERONINS_CPN60; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; ATP-binding; Chaperone; Cytoplasm;
KW Direct protein sequencing; Isomerase; Nucleotide-binding;
KW Reference proteome.
FT INIT_MET 1
FT /note="Removed"
FT /evidence="ECO:0000269|PubMed:9298646, ECO:0000269|Ref.8"
FT CHAIN 2..548
FT /note="Chaperonin GroEL"
FT /id="PRO_0000063358"
FT BINDING 30..33
FT /ligand="ATP"
FT /ligand_id="ChEBI:CHEBI:30616"
FT /evidence="ECO:0000255|HAMAP-Rule:MF_00600,
FT ECO:0000269|PubMed:25174333, ECO:0000305|PubMed:14517228,
FT ECO:0000305|PubMed:9285585, ECO:0007744|PDB:1AON,
FT ECO:0007744|PDB:1PCQ, ECO:0007744|PDB:1PF9,
FT ECO:0007744|PDB:3WVL"
FT BINDING 51
FT /ligand="ATP"
FT /ligand_id="ChEBI:CHEBI:30616"
FT /evidence="ECO:0000255|HAMAP-Rule:MF_00600,
FT ECO:0000269|PubMed:25174333, ECO:0000305|PubMed:14517228,
FT ECO:0000305|PubMed:9285585, ECO:0007744|PDB:1AON,
FT ECO:0007744|PDB:1PF9, ECO:0007744|PDB:3WVL"
FT BINDING 87..91
FT /ligand="ATP"
FT /ligand_id="ChEBI:CHEBI:30616"
FT /evidence="ECO:0000255|HAMAP-Rule:MF_00600,
FT ECO:0000269|PubMed:25174333, ECO:0000305|PubMed:14517228,
FT ECO:0000305|PubMed:9285585, ECO:0007744|PDB:1AON,
FT ECO:0007744|PDB:1PCQ, ECO:0007744|PDB:1PF9,
FT ECO:0007744|PDB:3WVL"
FT BINDING 415
FT /ligand="ATP"
FT /ligand_id="ChEBI:CHEBI:30616"
FT /evidence="ECO:0000255|HAMAP-Rule:MF_00600,
FT ECO:0000269|PubMed:25174333, ECO:0000305|PubMed:14517228,
FT ECO:0000305|PubMed:9285585, ECO:0007744|PDB:1AON,
FT ECO:0007744|PDB:1PCQ, ECO:0007744|PDB:1PF9,
FT ECO:0007744|PDB:3WVL"
FT BINDING 479..481
FT /ligand="ATP"
FT /ligand_id="ChEBI:CHEBI:30616"
FT /evidence="ECO:0000255|HAMAP-Rule:MF_00600,
FT ECO:0000269|PubMed:25174333, ECO:0000305|PubMed:14517228,
FT ECO:0000305|PubMed:9285585, ECO:0007744|PDB:1AON,
FT ECO:0007744|PDB:1PCQ, ECO:0007744|PDB:1PF9,
FT ECO:0007744|PDB:3WVL"
FT BINDING 495
FT /ligand="ATP"
FT /ligand_id="ChEBI:CHEBI:30616"
FT /evidence="ECO:0000255|HAMAP-Rule:MF_00600,
FT ECO:0000269|PubMed:25174333, ECO:0000305|PubMed:14517228,
FT ECO:0000305|PubMed:9285585, ECO:0007744|PDB:1AON,
FT ECO:0007744|PDB:1PCQ, ECO:0007744|PDB:1PF9,
FT ECO:0007744|PDB:3WVL"
FT MOD_RES 34
FT /note="N6-succinyllysine"
FT /evidence="ECO:0000269|PubMed:21151122"
FT MOD_RES 51
FT /note="N6-succinyllysine"
FT /evidence="ECO:0000269|PubMed:21151122"
FT MOD_RES 117
FT /note="N6-acetyllysine; alternate"
FT /evidence="ECO:0000269|PubMed:18723842"
FT MOD_RES 117
FT /note="N6-succinyllysine; alternate"
FT /evidence="ECO:0000269|PubMed:21151122"
FT MOD_RES 277
FT /note="N6-succinyllysine"
FT /evidence="ECO:0000269|PubMed:21151122"
FT MOD_RES 321
FT /note="N6-succinyllysine"
FT /evidence="ECO:0000269|PubMed:21151122"
FT MOD_RES 390
FT /note="N6-succinyllysine"
FT /evidence="ECO:0000269|PubMed:21151122"
FT MUTAGEN 2
FT /note="A->S: Complex stability is significantly decreased;
FT when associated with S-76, same residues as in
FT M.tuberculosis."
FT /evidence="ECO:0000269|PubMed:15327959"
FT MUTAGEN 76
FT /note="E->S: Complex stability is significantly decreased;
FT when associated with S-2, same residues as in
FT M.tuberculosis."
FT /evidence="ECO:0000269|PubMed:15327959"
FT MUTAGEN 109
FT /note="A->C: Forms inter-ring disulfide bonds. Prevents
FT ring separation and leads to the formation of high amounts
FT of symmetric GroEL:GroES2 complexes."
FT /evidence="ECO:0000269|PubMed:29336887"
FT MUTAGEN 398
FT /note="D->A: Can bind ATP with normal affinity, but is
FT defective in ATPase activity. Binds non-native rhodanese,
FT but cannot release the protein."
FT /evidence="ECO:0000269|PubMed:9285593"
FT MUTAGEN 461
FT /note="E->K: Temperature-sensitive lethal mutant. At
FT nonpermissive temperature, the rate of general translation
FT is reduced and a defined group of cytoplasmic proteins are
FT translated but fail to reach native form."
FT /evidence="ECO:0000269|PubMed:8104102"
FT CONFLICT 83..86
FT /note="DAAG -> GALQ (in Ref. 5; CAA30739)"
FT /evidence="ECO:0000305"
FT CONFLICT 262
FT /note="L -> A (in Ref. 1; CAA30698)"
FT /evidence="ECO:0000305"
FT CONFLICT 267
FT /note="M -> I (in Ref. 1; CAA30698)"
FT /evidence="ECO:0000305"
FT CONFLICT 343
FT /note="Q -> R (in Ref. 6; AAA23934)"
FT /evidence="ECO:0000305"
FT STRAND 4..8
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 9..28
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 32..34
FT /evidence="ECO:0007829|PDB:5W0S"
FT STRAND 37..40
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 43..46
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 48..50
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 53..59
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 65..85
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 89..108
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 113..134
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 141..151
FT /evidence="ECO:0007829|PDB:1KP8"
FT TURN 152..154
FT /evidence="ECO:0007829|PDB:1SS8"
FT HELIX 156..169
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 173..178
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 181..184
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 186..191
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 193..196
FT /evidence="ECO:0007829|PDB:3VZ6"
FT STRAND 199..201
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 202..204
FT /evidence="ECO:0007829|PDB:3VZ6"
FT TURN 208..211
FT /evidence="ECO:0007829|PDB:3VZ6"
FT STRAND 212..217
FT /evidence="ECO:0007829|PDB:3VZ6"
FT STRAND 219..227
FT /evidence="ECO:0007829|PDB:3VZ6"
FT HELIX 230..233
FT /evidence="ECO:0007829|PDB:3VZ6"
FT HELIX 234..243
FT /evidence="ECO:0007829|PDB:3VZ6"
FT STRAND 247..254
FT /evidence="ECO:0007829|PDB:3VZ6"
FT HELIX 256..267
FT /evidence="ECO:0007829|PDB:3VZ6"
FT STRAND 268..270
FT /evidence="ECO:0007829|PDB:1OEL"
FT STRAND 273..277
FT /evidence="ECO:0007829|PDB:3VZ6"
FT STRAND 279..281
FT /evidence="ECO:0007829|PDB:3VZ6"
FT HELIX 282..296
FT /evidence="ECO:0007829|PDB:3VZ6"
FT STRAND 300..302
FT /evidence="ECO:0007829|PDB:1XCK"
FT HELIX 303..305
FT /evidence="ECO:0007829|PDB:3VZ6"
FT HELIX 309..311
FT /evidence="ECO:0007829|PDB:3VZ6"
FT HELIX 314..316
FT /evidence="ECO:0007829|PDB:3VZ6"
FT STRAND 317..325
FT /evidence="ECO:0007829|PDB:3VZ6"
FT STRAND 330..335
FT /evidence="ECO:0007829|PDB:3VZ6"
FT HELIX 339..355
FT /evidence="ECO:0007829|PDB:3VZ6"
FT HELIX 359..375
FT /evidence="ECO:0007829|PDB:3VZ6"
FT STRAND 376..380
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 386..409
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 411..413
FT /evidence="ECO:0007829|PDB:1KP8"
FT TURN 414..416
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 417..425
FT /evidence="ECO:0007829|PDB:1KP8"
FT TURN 426..428
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 434..446
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 449..457
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 462..471
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 476..479
FT /evidence="ECO:0007829|PDB:1KP8"
FT TURN 480..483
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 484..487
FT /evidence="ECO:0007829|PDB:1KP8"
FT TURN 488..492
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 494..496
FT /evidence="ECO:0007829|PDB:1KP8"
FT HELIX 497..515
FT /evidence="ECO:0007829|PDB:1KP8"
FT STRAND 517..523
FT /evidence="ECO:0007829|PDB:1KP8"
SQ SEQUENCE 548 AA; 57329 MW; CD3A0FB505F74AD1 CRC64;
MAAKDVKFGN DARVKMLRGV NVLADAVKVT LGPKGRNVVL DKSFGAPTIT KDGVSVAREI
ELEDKFENMG AQMVKEVASK ANDAAGDGTT TATVLAQAII TEGLKAVAAG MNPMDLKRGI
DKAVTAAVEE LKALSVPCSD SKAIAQVGTI SANSDETVGK LIAEAMDKVG KEGVITVEDG
TGLQDELDVV EGMQFDRGYL SPYFINKPET GAVELESPFI LLADKKISNI REMLPVLEAV
AKAGKPLLII AEDVEGEALA TLVVNTMRGI VKVAAVKAPG FGDRRKAMLQ DIATLTGGTV
ISEEIGMELE KATLEDLGQA KRVVINKDTT TIIDGVGEEA AIQGRVAQIR QQIEEATSDY
DREKLQERVA KLAGGVAVIK VGAATEVEMK EKKARVEDAL HATRAAVEEG VVAGGGVALI
RVASKLADLR GQNEDQNVGI KVALRAMEAP LRQIVLNCGE EPSVVANTVK GGDGNYGYNA
ATEEYGNMID MGILDPTKVT RSALQYAASV AGLMITTECM VTDLPKNDAA DLGAAGGMGG
MGGMGGMM