位置:首页 > 蛋白库 > CRY1_MACFA
CRY1_MACFA
ID   CRY1_MACFA              Reviewed;         586 AA.
AC   Q8WP19;
DT   28-NOV-2006, integrated into UniProtKB/Swiss-Prot.
DT   01-MAR-2002, sequence version 1.
DT   03-AUG-2022, entry version 90.
DE   RecName: Full=Cryptochrome-1;
GN   Name=CRY1; ORFNames=QtsA-16837;
OS   Macaca fascicularis (Crab-eating macaque) (Cynomolgus monkey).
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC   Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini;
OC   Cercopithecidae; Cercopithecinae; Macaca.
OX   NCBI_TaxID=9541;
RN   [1]
RP   NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC   TISSUE=Testis;
RX   PubMed=12498619; DOI=10.1186/1471-2164-3-36;
RA   Osada N., Hida M., Kusuda J., Tanuma R., Hirata M., Suto Y., Hirai M.,
RA   Terao K., Sugano S., Hashimoto K.;
RT   "Cynomolgus monkey testicular cDNAs for discovery of novel human genes in
RT   the human genome sequence.";
RL   BMC Genomics 3:36-36(2002).
CC   -!- FUNCTION: Transcriptional repressor which forms a core component of the
CC       circadian clock. The circadian clock, an internal time-keeping system,
CC       regulates various physiological processes through the generation of
CC       approximately 24 hour circadian rhythms in gene expression, which are
CC       translated into rhythms in metabolism and behavior. It is derived from
CC       the Latin roots 'circa' (about) and 'diem' (day) and acts as an
CC       important regulator of a wide array of physiological functions
CC       including metabolism, sleep, body temperature, blood pressure,
CC       endocrine, immune, cardiovascular, and renal function. Consists of two
CC       major components: the central clock, residing in the suprachiasmatic
CC       nucleus (SCN) of the brain, and the peripheral clocks that are present
CC       in nearly every tissue and organ system. Both the central and
CC       peripheral clocks can be reset by environmental cues, also known as
CC       Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the
CC       central clock is light, which is sensed by retina and signals directly
CC       to the SCN. The central clock entrains the peripheral clocks through
CC       neuronal and hormonal signals, body temperature and feeding-related
CC       cues, aligning all clocks with the external light/dark cycle. Circadian
CC       rhythms allow an organism to achieve temporal homeostasis with its
CC       environment at the molecular level by regulating gene expression to
CC       create a peak of protein expression once every 24 hours to control when
CC       a particular physiological process is most active with respect to the
CC       solar day. Transcription and translation of core clock components
CC       (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and
CC       CRY2) plays a critical role in rhythm generation, whereas delays
CC       imposed by post-translational modifications (PTMs) are important for
CC       determining the period (tau) of the rhythms (tau refers to the period
CC       of a rhythm and is the length, in time, of one complete cycle). A
CC       diurnal rhythm is synchronized with the day/night cycle, while the
CC       ultradian and infradian rhythms have a period shorter and longer than
CC       24 hours, respectively. Disruptions in the circadian rhythms contribute
CC       to the pathology of cardiovascular diseases, cancer, metabolic
CC       syndromes and aging. A transcription/translation feedback loop (TTFL)
CC       forms the core of the molecular circadian clock mechanism.
CC       Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2,
CC       form the positive limb of the feedback loop, act in the form of a
CC       heterodimer and activate the transcription of core clock genes and
CC       clock-controlled genes (involved in key metabolic processes), harboring
CC       E-box elements (5'-CACGTG-3') within their promoters. The core clock
CC       genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form
CC       the negative limb of the feedback loop and interact with the
CC       CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its
CC       activity and thereby negatively regulating their own expression. This
CC       heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G,
CC       which form a second feedback loop and which activate and repress
CC       ARNTL/BMAL1 transcription, respectively. CRY1 and CRY2 have redundant
CC       functions but also differential and selective contributions at least in
CC       defining the pace of the SCN circadian clock and its circadian
CC       transcriptional outputs. More potent transcriptional repressor in
CC       cerebellum and liver than CRY2, though more effective in lengthening
CC       the period of the SCN oscillator. On its side, CRY2 seems to play a
CC       critical role in tuning SCN circadian period by opposing the action of
CC       CRY1. With CRY2, is dispensable for circadian rhythm generation but
CC       necessary for the development of intercellular networks for rhythm
CC       synchrony. Capable of translocating circadian clock core proteins such
CC       as PER proteins to the nucleus. Interacts with CLOCK-ARNTL/BMAL1
CC       independently of PER proteins and is found at CLOCK-ARNTL/BMAL1-bound
CC       sites, suggesting that CRY may act as a molecular gatekeeper to
CC       maintainCLOCK-ARNTL/BMAL1 in a poised and repressed state until the
CC       proper time for transcriptional activation. Represses the CLOCK-
CC       ARNTL/BMAL1 induced transcription of BHLHE40/DEC1, ATF4, MTA1, KLF10
CC       and NAMPT. May repress circadian target genes expression in
CC       collaboration with HDAC1 and HDAC2 through histone deacetylation.
CC       Mediates the clock-control activation of ATR and modulates ATR-mediated
CC       DNA damage checkpoint. In liver, mediates circadian regulation of cAMP
CC       signaling and gluconeogenesis by binding to membrane-coupled G proteins
CC       and blocking glucagon-mediated increases in intracellular cAMP
CC       concentrations and CREB1 phosphorylation. Inhibits hepatic
CC       gluconeogenesis by decreasing nuclear FOXO1 levels that down-regulates
CC       gluconeogenic gene expression. Besides its role in the maintenance of
CC       the circadian clock, is also involved in the regulation of other
CC       processes. Represses glucocorticoid receptor NR3C1/GR-induced
CC       transcriptional activity by binding to glucocorticoid response elements
CC       (GREs). Plays a key role in glucose and lipid metabolism modulation, in
CC       part, through the transcriptional regulation of genes involved in these
CC       pathways, such as LEP or ACSL4 (By similarity). Represses PPARD and its
CC       target genes in the skeletal muscle and limits exercise capacity (By
CC       similarity). Plays an essential role in the generation of circadian
CC       rhythms in the retina (By similarity). Represses the transcriptional
CC       activity of NR1I2 (By similarity). {ECO:0000250|UniProtKB:P97784,
CC       ECO:0000250|UniProtKB:Q16526}.
CC   -!- COFACTOR:
CC       Name=FAD; Xref=ChEBI:CHEBI:57692;
CC         Evidence={ECO:0000250|UniProtKB:P97784};
CC       Note=Binds 1 FAD per subunit. Only a minority of the protein molecules
CC       contain bound FAD. Contrary to the situation in photolyases, the FAD is
CC       bound in a shallow, surface-exposed pocket.
CC       {ECO:0000250|UniProtKB:P97784};
CC   -!- COFACTOR:
CC       Name=(6R)-5,10-methylene-5,6,7,8-tetrahydrofolate;
CC         Xref=ChEBI:CHEBI:15636; Evidence={ECO:0000250};
CC       Note=Binds 1 5,10-methenyltetrahydrofolate (MTHF) non-covalently per
CC       subunit. {ECO:0000250};
CC   -!- SUBUNIT: Component of the circadian core oscillator, which includes the
CC       CRY proteins, CLOCK or NPAS2, ARNTL/BMAL1 or ARNTL2/BMAL2, CSNK1D
CC       and/or CSNK1E, TIMELESS, and the PER proteins (By similarity).
CC       Interacts directly with TIMELESS (By similarity). Interacts directly
CC       with PER1, PER2 and PER3; interaction with PER2 inhibits its
CC       ubiquitination and vice versa (By similarity). Interacts with FBXL21
CC       (By similarity). Interacts with FBXL3 (By similarity). Interacts with
CC       CLOCK-ARNTL/BMAL1 independently of PER2 and DNA (By similarity).
CC       Interacts with HDAC1, HDAC2 and SIN3B (By similarity). Interacts with
CC       nuclear receptors AR, NR1D1, NR3C1/GR, RORA and RORC; the interaction
CC       with at least NR3C1/GR is ligand dependent (By similarity). Interacts
CC       with PRKDC (By similarity). Interacts with the G protein subunit alpha
CC       GNAS; the interaction may block GPCR-mediated regulation of cAMP
CC       concentrations (By similarity). Interacts with PRMT5 (By similarity).
CC       Interacts with EZH2 (By similarity). Interacts with MYBBP1A, DOCK7,
CC       HNRNPU, RPL7A, RPL8 and RPS3 (By similarity). Interacts with PPP5C (via
CC       TPR repeats) (By similarity). Interacts with MAP1LC3B (By similarity).
CC       Interacts with CLOCK (By similarity). Interacts with ARNTL/BMAL1 (By
CC       similarity). Interacts weakly with HDAC3; this interaction is enhanced
CC       in the presence of FBXL3 (By similarity). Interacts with TRIM28, KCTD5
CC       and DDB1 (By similarity). Interacts with FOXO1 (By similarity).
CC       Interacts with DTL and DDB1-CUL4A complex (By similarity). Interacts
CC       with HNF4A (By similarity). Interacts with PSMD2 in a KDM8-dependent
CC       manner (By similarity). Interacts with KDM8 in a FBXL3-dependent manner
CC       (By similarity). Interacts with PPARG in a ligand-dependent manner (By
CC       similarity). Interacts with PPARD (via domain NR LBD) and NR1I2 (via
CC       domain NR LBD) in a ligand-dependent manner (By similarity). Interacts
CC       with PPARA, NR1I3 and VDR (By similarity).
CC       {ECO:0000250|UniProtKB:P97784, ECO:0000250|UniProtKB:Q16526}.
CC   -!- SUBCELLULAR LOCATION: Cytoplasm {ECO:0000250|UniProtKB:P97784}. Nucleus
CC       {ECO:0000250|UniProtKB:P97784}. Note=Translocated to the nucleus
CC       through interaction with other clock proteins such as PER2 or
CC       ARNTL/BMAL1. {ECO:0000250|UniProtKB:P97784}.
CC   -!- DOMAIN: The LIR motifs (LC3-interacting region) 3 and 5 are required
CC       for its interaction with MAP1LC3B and for its autophagy-mediated
CC       degradation. {ECO:0000250|UniProtKB:P97784}.
CC   -!- PTM: Phosphorylation on Ser-247 by MAPK is important for the inhibition
CC       of CLOCK-ARNTL/BMAL1-mediated transcriptional activity. Phosphorylation
CC       by CSNK1E requires interaction with PER1 or PER2. Phosphorylation at
CC       Ser-71 and Ser-280 by AMPK decreases protein stability. Phosphorylation
CC       at Ser-568 exhibits a robust circadian rhythm with a peak at CT8,
CC       increases protein stability, prevents SCF(FBXL3)-mediated degradation
CC       and is antagonized by interaction with PRKDC.
CC       {ECO:0000250|UniProtKB:P97784}.
CC   -!- PTM: Ubiquitinated by the SCF(FBXL3) and SCF(FBXL21) complexes,
CC       regulating the balance between degradation and stabilization (By
CC       similarity). The SCF(FBXL3) complex is mainly nuclear and mediates
CC       ubiquitination and subsequent degradation of CRY1 (By similarity). In
CC       contrast, cytoplasmic SCF(FBXL21) complex-mediated ubiquitination leads
CC       to stabilize CRY1 and counteract the activity of the SCF(FBXL3) complex
CC       (By similarity). The SCF(FBXL3) and SCF(FBXL21) complexes probably
CC       mediate ubiquitination at different Lys residues (By similarity).
CC       Ubiquitination at Lys-11 and Lys-107 are specifically ubiquitinated by
CC       the SCF(FBXL21) complex but not by the SCF(FBXL3) complex (By
CC       similarity). Ubiquitination may be inhibited by PER2 (By similarity).
CC       Deubiquitinated by USP7 (By similarity).
CC       {ECO:0000250|UniProtKB:P97784}.
CC   -!- PTM: Undergoes autophagy-mediated degradation in the liver in a time-
CC       dependent manner. Autophagic degradation of CRY1 (an inhibitor of
CC       gluconeogenesis) occurs during periods of reduced feeding allowing
CC       induction of gluconeogenesis and maintenance of blood glucose levels.
CC       {ECO:0000250|UniProtKB:P97784}.
CC   -!- SIMILARITY: Belongs to the DNA photolyase class-1 family.
CC       {ECO:0000305}.
CC   ---------------------------------------------------------------------------
CC   Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms
CC   Distributed under the Creative Commons Attribution (CC BY 4.0) License
CC   ---------------------------------------------------------------------------
DR   EMBL; AB074458; BAB72089.1; -; mRNA.
DR   AlphaFoldDB; Q8WP19; -.
DR   SMR; Q8WP19; -.
DR   STRING; 9541.XP_005572176.1; -.
DR   eggNOG; KOG0133; Eukaryota.
DR   Proteomes; UP000233100; Unplaced.
DR   GO; GO:0005737; C:cytoplasm; IEA:UniProtKB-SubCell.
DR   GO; GO:0005634; C:nucleus; ISS:UniProtKB.
DR   GO; GO:0000166; F:nucleotide binding; IEA:UniProtKB-KW.
DR   GO; GO:0009881; F:photoreceptor activity; IEA:UniProtKB-KW.
DR   GO; GO:0032922; P:circadian regulation of gene expression; ISS:UniProtKB.
DR   GO; GO:0007623; P:circadian rhythm; ISS:UniProtKB.
DR   GO; GO:0006975; P:DNA damage induced protein phosphorylation; ISS:UniProtKB.
DR   GO; GO:0043153; P:entrainment of circadian clock by photoperiod; ISS:UniProtKB.
DR   GO; GO:0006094; P:gluconeogenesis; ISS:UniProtKB.
DR   GO; GO:0042593; P:glucose homeostasis; ISS:UniProtKB.
DR   GO; GO:0042754; P:negative regulation of circadian rhythm; ISS:UniProtKB.
DR   GO; GO:0045744; P:negative regulation of G protein-coupled receptor signaling pathway; ISS:UniProtKB.
DR   GO; GO:2000323; P:negative regulation of glucocorticoid receptor signaling pathway; ISS:UniProtKB.
DR   GO; GO:0045721; P:negative regulation of gluconeogenesis; ISS:UniProtKB.
DR   GO; GO:0031397; P:negative regulation of protein ubiquitination; ISS:UniProtKB.
DR   GO; GO:0000122; P:negative regulation of transcription by RNA polymerase II; ISS:UniProtKB.
DR   GO; GO:0045892; P:negative regulation of transcription, DNA-templated; ISS:UniProtKB.
DR   GO; GO:0031398; P:positive regulation of protein ubiquitination; ISS:UniProtKB.
DR   GO; GO:0042752; P:regulation of circadian rhythm; ISS:UniProtKB.
DR   GO; GO:2000001; P:regulation of DNA damage checkpoint; ISS:UniProtKB.
DR   GO; GO:0014823; P:response to activity; ISS:UniProtKB.
DR   GO; GO:0033762; P:response to glucagon; ISS:UniProtKB.
DR   GO; GO:0009416; P:response to light stimulus; ISS:UniProtKB.
DR   Gene3D; 3.40.50.620; -; 1.
DR   InterPro; IPR036134; Crypto/Photolyase_FAD-like_sf.
DR   InterPro; IPR036155; Crypto/Photolyase_N_sf.
DR   InterPro; IPR005101; Cryptochr/Photolyase_FAD-bd.
DR   InterPro; IPR002081; Cryptochrome/DNA_photolyase_1.
DR   InterPro; IPR006050; DNA_photolyase_N.
DR   InterPro; IPR014729; Rossmann-like_a/b/a_fold.
DR   PANTHER; PTHR11455; PTHR11455; 1.
DR   Pfam; PF00875; DNA_photolyase; 1.
DR   Pfam; PF03441; FAD_binding_7; 1.
DR   SUPFAM; SSF48173; SSF48173; 1.
DR   SUPFAM; SSF52425; SSF52425; 1.
DR   PROSITE; PS51645; PHR_CRY_ALPHA_BETA; 1.
PE   2: Evidence at transcript level;
KW   Biological rhythms; Chromophore; Cytoplasm; FAD; Flavoprotein;
KW   Isopeptide bond; Nucleotide-binding; Nucleus; Phosphoprotein;
KW   Photoreceptor protein; Receptor; Reference proteome; Repressor;
KW   Sensory transduction; Transcription; Transcription regulation;
KW   Ubl conjugation.
FT   CHAIN           1..586
FT                   /note="Cryptochrome-1"
FT                   /id="PRO_0000261141"
FT   DOMAIN          3..132
FT                   /note="Photolyase/cryptochrome alpha/beta"
FT   REGION          371..470
FT                   /note="Required for inhibition of CLOCK-ARNTL/BMAL1-
FT                   mediated transcription"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   REGION          471..493
FT                   /note="Interaction with TIMELESS"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   REGION          545..586
FT                   /note="Disordered"
FT                   /evidence="ECO:0000256|SAM:MobiDB-lite"
FT   MOTIF           50..54
FT                   /note="LIR 1"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           82..87
FT                   /note="LIR 2"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           151..156
FT                   /note="LIR 3"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           255..260
FT                   /note="LIR 4"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           271..276
FT                   /note="LIR 5"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           285..290
FT                   /note="LIR 6"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           335..339
FT                   /note="LIR 7"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           379..384
FT                   /note="LIR 8"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           395..400
FT                   /note="LIR 9"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           411..416
FT                   /note="LIR 10"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           430..435
FT                   /note="LIR 11"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           486..491
FT                   /note="LIR 12"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOTIF           492..497
FT                   /note="LIR 13"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   BINDING         252
FT                   /ligand="FAD"
FT                   /ligand_id="ChEBI:CHEBI:57692"
FT                   /evidence="ECO:0000250"
FT   BINDING         289
FT                   /ligand="FAD"
FT                   /ligand_id="ChEBI:CHEBI:57692"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   BINDING         355
FT                   /ligand="FAD"
FT                   /ligand_id="ChEBI:CHEBI:57692"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   BINDING         387..389
FT                   /ligand="FAD"
FT                   /ligand_id="ChEBI:CHEBI:57692"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOD_RES         71
FT                   /note="Phosphoserine; by AMPK"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOD_RES         247
FT                   /note="Phosphoserine; by MAPK"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOD_RES         280
FT                   /note="Phosphoserine; by AMPK"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   MOD_RES         568
FT                   /note="Phosphoserine"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   CROSSLNK        11
FT                   /note="Glycyl lysine isopeptide (Lys-Gly) (interchain with
FT                   G-Cter in ubiquitin)"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   CROSSLNK        107
FT                   /note="Glycyl lysine isopeptide (Lys-Gly) (interchain with
FT                   G-Cter in ubiquitin)"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   CROSSLNK        159
FT                   /note="Glycyl lysine isopeptide (Lys-Gly) (interchain with
FT                   G-Cter in ubiquitin)"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   CROSSLNK        329
FT                   /note="Glycyl lysine isopeptide (Lys-Gly) (interchain with
FT                   G-Cter in ubiquitin)"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   CROSSLNK        485
FT                   /note="Glycyl lysine isopeptide (Lys-Gly) (interchain with
FT                   G-Cter in ubiquitin)"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
FT   CROSSLNK        565
FT                   /note="Glycyl lysine isopeptide (Lys-Gly) (interchain with
FT                   G-Cter in ubiquitin)"
FT                   /evidence="ECO:0000250|UniProtKB:P97784"
SQ   SEQUENCE   586 AA;  66497 MW;  702D3D045A82347A CRC64;
     MGVNAVHWFR KGLRLHDNPA LKECIQGADT IRCVYILDPW FAGSSNVGIN RWRFLLQCLE
     DLDANLRKLN SRLFVIRGQP ADVFPRLFKE WNITKLSIEY DSEPFGKERD AAIKKLATEA
     GVEVIVRISH TLYDLDKIIE LNGGQPPLTY KRFQTLISKM EPLEIPVETI TSEVIEKCTT
     PLSDDHDEKY GVPSLEELGF DTDGLSSAVW PGGETEALTR LERHLERKAW VANFERPRMN
     ANSLLASPTG LSPYLRFGCL SCRLFYFKLT DLYKKVKRNS SPPLSLYGQL LWREFFYTAA
     TNNPRFDKME GNPICVQIPW DKNPEALAKW AEGRTGFPWI DAIMTQLRQE GWIHHLARHA
     VACFLTRGDL WISWEEGMKV FEELLLDADW SINAGSWMWL SCSSFFQQFF HCYCPVGFGR
     RTDPNGDYIR RYLPVLRGFP AKYIYDPWNA PEGIQKVAKC LIGINYPKPM VNHAEASRLN
     IERMKQIYQQ LSRYRGLGLL ASVPSNPNGN GGFMGYSTEN IPGCSSSGSC SQGSGILHYT
     HGDSQQTHLL KQGRSSMGTG LSGGKRPSQE EDTQSIGPKV QRQSTN
 
 
维奥蛋白资源库 - 中文蛋白资源 CopyRight © 2010-2024